BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 30968163)

  • 1. Production of controlled molecular weight hyaluronic acid by glucostat strategy using recombinant Lactococcus lactis cultures.
    Jeeva P; Shanmuga Doss S; Sundaram V; Jayaraman G
    Appl Microbiol Biotechnol; 2019 Jun; 103(11):4363-4375. PubMed ID: 30968163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of acetyl-CoA by acetate co-utilization in recombinant Lactococcus lactis cultures enables the production of high molecular weight hyaluronic acid.
    Puvendran K; Jayaraman G
    Appl Microbiol Biotechnol; 2019 Sep; 103(17):6989-7001. PubMed ID: 31267232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromosomal integration of hyaluronic acid synthesis (has) genes enhances the molecular weight of hyaluronan produced in Lactococcus lactis.
    Hmar RV; Prasad SB; Jayaraman G; Ramachandran KB
    Biotechnol J; 2014 Dec; 9(12):1554-64. PubMed ID: 25044639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hyaluronic acid production is enhanced by the additional co-expression of UDP-glucose pyrophosphorylase in Lactococcus lactis.
    Prasad SB; Jayaraman G; Ramachandran KB
    Appl Microbiol Biotechnol; 2010 Mar; 86(1):273-83. PubMed ID: 19862515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcription analysis of hyaluronan biosynthesis genes in Streptococcus zooepidemicus and metabolically engineered Lactococcus lactis.
    Prasad SB; Ramachandran KB; Jayaraman G
    Appl Microbiol Biotechnol; 2012 Jun; 94(6):1593-607. PubMed ID: 22367612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constructing a recombinant hyaluronic acid biosynthesis operon and producing food-grade hyaluronic acid in Lactococcus lactis.
    Sheng J; Ling P; Wang F
    J Ind Microbiol Biotechnol; 2015 Feb; 42(2):197-206. PubMed ID: 25447786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of induction promoters to regulate hyaluronan synthase and UDP-glucose-6-dehydrogenase of Streptococcus zooepidemicus expression in Lactococcus lactis: a case study of the regulation mechanism of hyaluronic acid polymer.
    Sheng JZ; Ling PX; Zhu XQ; Guo XP; Zhang TM; He YL; Wang FS
    J Appl Microbiol; 2009 Jul; 107(1):136-44. PubMed ID: 19302304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Higher titer hyaluronic acid production in recombinant Lactococcus lactis.
    Sunguroğlu C; Sezgin DE; Aytar Çelik P; Çabuk A
    Prep Biochem Biotechnol; 2018; 48(8):734-742. PubMed ID: 30265187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ratio of intracellular precursors concentration and their flux influences hyaluronic acid molecular weight in Streptococcus zooepidemicus and recombinant Lactococcus lactis.
    Badle SS; Jayaraman G; Ramachandran KB
    Bioresour Technol; 2014 Jul; 163():222-7. PubMed ID: 24814248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time monitoring of hyaluronic acid fermentation by in situ transflectance spectroscopy.
    Puvendran K; Anupama K; Jayaraman G
    Appl Microbiol Biotechnol; 2018 Mar; 102(6):2659-2669. PubMed ID: 29442167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyaluronic acid production by recombinant Lactococcus lactis.
    Chien LJ; Lee CK
    Appl Microbiol Biotechnol; 2007 Nov; 77(2):339-46. PubMed ID: 17805528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploiting the diversity of streptococcal hyaluronan synthases for the production of molecular weight-tailored hyaluronan.
    Schulte S; Doss SS; Jeeva P; Ananth M; Blank LM; Jayaraman G
    Appl Microbiol Biotechnol; 2019 Sep; 103(18):7567-7581. PubMed ID: 31367857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic engineering of Pichia pastoris for production of hyaluronic acid with high molecular weight.
    Jeong E; Shim WY; Kim JH
    J Biotechnol; 2014 Sep; 185():28-36. PubMed ID: 24892811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lactococcus lactis as a cell factory: a twofold increase in phosphofructokinase activity results in a proportional increase in specific rates of glucose uptake and lactate formation.
    Papagianni M; Avramidis N
    Enzyme Microb Technol; 2011 Jul; 49(2):197-202. PubMed ID: 22112409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of aqueous two-phase systems for purification of hyaluronic acid produced by metabolically engineered Lactococcus lactis.
    Rajendran V; Puvendran K; Guru BR; Jayaraman G
    J Sep Sci; 2016 Feb; 39(4):655-62. PubMed ID: 26643937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hyaluronic acid production with Corynebacterium glutamicum: effect of media composition on yield and molecular weight.
    Hoffmann J; Altenbuchner J
    J Appl Microbiol; 2014 Sep; 117(3):663-78. PubMed ID: 24863652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic and biochemical characterization of genes involved in hyaluronic acid synthesis in Streptococcus zooepidemicus.
    Zhang Y; Luo K; Zhao Q; Qi Z; Nielsen LK; Liu H
    Appl Microbiol Biotechnol; 2016 Apr; 100(8):3611-20. PubMed ID: 26758299
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Construction of engineered Streptococcus zooepidemicus for the production of hyaluronic acid ligosaccharide].
    Wei C; Du G; Chen J; Kang Z
    Sheng Wu Gong Cheng Xue Bao; 2019 May; 35(5):805-815. PubMed ID: 31222999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced Biosynthesis of Hyaluronic Acid Using Engineered Corynebacterium glutamicum Via Metabolic Pathway Regulation.
    Cheng F; Luozhong S; Guo Z; Yu H; Stephanopoulos G
    Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28869338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hyaluronan molecular weight is controlled by UDP-N-acetylglucosamine concentration in Streptococcus zooepidemicus.
    Chen WY; Marcellin E; Hung J; Nielsen LK
    J Biol Chem; 2009 Jul; 284(27):18007-14. PubMed ID: 19451654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.