These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 30968358)

  • 41. Application of single-cell multi-omics approaches in horticulture research.
    Zhang J; Ahmad M; Gao H
    Mol Hortic; 2023 Sep; 3(1):18. PubMed ID: 37789394
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications.
    Mark D; Haeberle S; Roth G; von Stetten F; Zengerle R
    Chem Soc Rev; 2010 Mar; 39(3):1153-82. PubMed ID: 20179830
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Modular barcode beads for microfluidic single cell genomics.
    Delley CL; Abate AR
    Sci Rep; 2021 May; 11(1):10857. PubMed ID: 34035349
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Massively parallel whole genome amplification for single-cell sequencing using droplet microfluidics.
    Hosokawa M; Nishikawa Y; Kogawa M; Takeyama H
    Sci Rep; 2017 Jul; 7(1):5199. PubMed ID: 28701744
    [TBL] [Abstract][Full Text] [Related]  

  • 45. SlipChip Device for Digital Nucleic Acid Amplification.
    Shen F
    Methods Mol Biol; 2017; 1547():123-132. PubMed ID: 28044292
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Toward a Taxonomy for Multi-Omics Science? Terminology Development for Whole Genome Study Approaches by Omics Technology and Hierarchy.
    Pirih N; Kunej T
    OMICS; 2017 Jan; 21(1):1-16. PubMed ID: 28271979
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Micro-optics for microfluidic analytical applications.
    Yang H; Gijs MAM
    Chem Soc Rev; 2018 Feb; 47(4):1391-1458. PubMed ID: 29308474
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Single-Cell Ssequencing in Cancer: Recent Applications to Immunogenomics and Multi-omics Tools.
    Sierant MC; Choi J
    Genomics Inform; 2018 Dec; 16(4):e17. PubMed ID: 30602078
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Single-Cell Sequencing for Precise Cancer Research: Progress and Prospects.
    Zhang X; Marjani SL; Hu Z; Weissman SM; Pan X; Wu S
    Cancer Res; 2016 Mar; 76(6):1305-12. PubMed ID: 26941284
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Continuous flow multi-stage microfluidic reactors via hydrodynamic microparticle railing.
    Sochol RD; Li S; Lee LP; Lin L
    Lab Chip; 2012 Oct; 12(20):4168-77. PubMed ID: 22875202
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Studying hematopoiesis using single-cell technologies.
    Ye F; Huang W; Guo G
    J Hematol Oncol; 2017 Jan; 10(1):27. PubMed ID: 28109325
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Label-free screening of single biomolecules through resistive pulse sensing technology for precision medicine applications.
    Harrer S; Kim SC; Schieber C; Kannam S; Gunn N; Moore S; Scott D; Bathgate R; Skafidas S; Wagner JM
    Nanotechnology; 2015 May; 26(18):182502. PubMed ID: 25875197
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Recent advances in single cell manipulation and biochemical analysis on microfluidics.
    Gao D; Jin F; Zhou M; Jiang Y
    Analyst; 2019 Jan; 144(3):766-781. PubMed ID: 30298867
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Plant genome-scale reconstruction: from single cell to multi-tissue modelling and omics analyses.
    Gomes de Oliveira Dal'Molin C; Nielsen LK
    Curr Opin Biotechnol; 2018 Feb; 49():42-48. PubMed ID: 28806583
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Recent developments in microfluidic large scale integration.
    Araci IE; Brisk P
    Curr Opin Biotechnol; 2014 Feb; 25():60-8. PubMed ID: 24484882
    [TBL] [Abstract][Full Text] [Related]  

  • 56. BioVLAB-mCpG-SNP-EXPRESS: A system for multi-level and multi-perspective analysis and exploration of DNA methylation, sequence variation (SNPs), and gene expression from multi-omics data.
    Chae H; Lee S; Seo S; Jung D; Chang H; Nephew KP; Kim S
    Methods; 2016 Dec; 111():64-71. PubMed ID: 27477210
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Single Cell Multi-Omics Technology: Methodology and Application.
    Hu Y; An Q; Sheu K; Trejo B; Fan S; Guo Y
    Front Cell Dev Biol; 2018; 6():28. PubMed ID: 29732369
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Target Confinement in Small Reaction Volumes Using Microfluidic Technologies: A Smart Approach for Single-Entity Detection and Analysis.
    Ven K; Vanspauwen B; PĂ©rez-Ruiz E; Leirs K; Decrop D; Gerstmans H; Spasic D; Lammertyn J
    ACS Sens; 2018 Feb; 3(2):264-284. PubMed ID: 29363316
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dual-layered hydrogels allow complete genome recovery with nucleic acid cytometry.
    Hatori MN; Modavi C; Xu P; Weisgerber D; Abate AR
    Biotechnol J; 2022 Apr; 17(4):e2100483. PubMed ID: 35088927
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Single-molecule emulsion PCR in microfluidic droplets.
    Zhu Z; Jenkins G; Zhang W; Zhang M; Guan Z; Yang CJ
    Anal Bioanal Chem; 2012 Jun; 403(8):2127-43. PubMed ID: 22451171
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.