BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 30968464)

  • 1. Side chain electrostatic interactions and pH-dependent expansion of the intrinsically disordered, highly acidic carboxyl-terminus of γ-tubulin.
    Payliss BJ; Vogel J; Mittermaier AK
    Protein Sci; 2019 Jun; 28(6):1095-1105. PubMed ID: 30968464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of pK
    Payliss B; Mittermaier A
    Methods Mol Biol; 2020; 2141():319-336. PubMed ID: 32696365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intrinsic α helix propensities compact hydrodynamic radii in intrinsically disordered proteins.
    English LR; Tilton EC; Ricard BJ; Whitten ST
    Proteins; 2017 Feb; 85(2):296-311. PubMed ID: 27936491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Concerted millisecond timescale dynamics in the intrinsically disordered carboxyl terminus of γ-tubulin induced by mutation of a conserved tyrosine residue.
    Harris J; Shadrina M; Oliver C; Vogel J; Mittermaier A
    Protein Sci; 2018 Feb; 27(2):531-545. PubMed ID: 29127738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intrinsically disordered inhibitor of glutamine synthetase is a functional protein with random-coil-like pK
    Cozza C; Neira JL; Florencio FJ; Muro-Pastor MI; Rizzuti B
    Protein Sci; 2017 Jun; 26(6):1105-1115. PubMed ID: 28295918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature effects on the hydrodynamic radius of the intrinsically disordered N-terminal region of the p53 protein.
    Langridge TD; Tarver MJ; Whitten ST
    Proteins; 2014 Apr; 82(4):668-78. PubMed ID: 24150971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Obtaining Hydrodynamic Radii of Intrinsically Disordered Protein Ensembles by Pulsed Field Gradient NMR Measurements.
    Leeb S; Danielsson J
    Methods Mol Biol; 2020; 2141():285-302. PubMed ID: 32696363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aggregation properties of a disordered protein are tunable by pH and depend on its net charge per residue.
    Tedeschi G; Mangiagalli M; Chmielewska S; Lotti M; Natalello A; Brocca S
    Biochim Biophys Acta Gen Subj; 2017 Nov; 1861(11 Pt A):2543-2550. PubMed ID: 28890401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computing, Analyzing, and Comparing the Radius of Gyration and Hydrodynamic Radius in Conformational Ensembles of Intrinsically Disordered Proteins.
    Ahmed MC; Crehuet R; Lindorff-Larsen K
    Methods Mol Biol; 2020; 2141():429-445. PubMed ID: 32696370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How multisite phosphorylation impacts the conformations of intrinsically disordered proteins.
    Jin F; Gräter F
    PLoS Comput Biol; 2021 May; 17(5):e1008939. PubMed ID: 33945530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determinants of the pKa values of ionizable residues in an intrinsically disordered protein.
    Neira JL; Rizzuti B; Iovanna JL
    Arch Biochem Biophys; 2016 May; 598():18-27. PubMed ID: 27046343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational propensities of intrinsically disordered proteins from NMR chemical shifts.
    Kragelj J; Ozenne V; Blackledge M; Jensen MR
    Chemphyschem; 2013 Sep; 14(13):3034-45. PubMed ID: 23794453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of macromolecular crowding on the charge regulation of intrinsically disordered proteins.
    Blanco PM; Madurga S; Garcés JL; Mas F; Dias RS
    Soft Matter; 2021 Jan; 17(3):655-669. PubMed ID: 33215185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A J-modulated protonless NMR experiment characterizes the conformational ensemble of the intrinsically disordered protein WIP.
    Rozentur-Shkop E; Goobes G; Chill JH
    J Biomol NMR; 2016 Dec; 66(4):243-257. PubMed ID: 27844185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein structural changes characterized by high-pressure, pulsed field gradient diffusion NMR spectroscopy.
    Ramanujam V; Alderson TR; Pritišanac I; Ying J; Bax A
    J Magn Reson; 2020 Mar; 312():106701. PubMed ID: 32113145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulating charge patterning and ionic strength as a strategy to induce conformational changes in intrinsically disordered proteins.
    Huihui J; Firman T; Ghosh K
    J Chem Phys; 2018 Aug; 149(8):085101. PubMed ID: 30193467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of electrostatic interactions in binding of peptides and intrinsically disordered proteins to their folded targets. 1. NMR and MD characterization of the complex between the c-Crk N-SH3 domain and the peptide Sos.
    Xue Y; Yuwen T; Zhu F; Skrynnikov NR
    Biochemistry; 2014 Oct; 53(41):6473-95. PubMed ID: 25207671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational response to charge clustering in synthetic intrinsically disordered proteins.
    Tedeschi G; Salladini E; Santambrogio C; Grandori R; Longhi S; Brocca S
    Biochim Biophys Acta Gen Subj; 2018 Oct; 1862(10):2204-2214. PubMed ID: 30025858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Negative Thermal Expansion and Disorder-to-Order Collapse of an Intrinsically Disordered Protein under Marginally Denaturing Conditions.
    Bhuyan AK
    J Phys Chem B; 2022 Jul; 126(27):5055-5065. PubMed ID: 35786899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydropathy Patterning Complements Charge Patterning to Describe Conformational Preferences of Disordered Proteins.
    Zheng W; Dignon G; Brown M; Kim YC; Mittal J
    J Phys Chem Lett; 2020 May; 11(9):3408-3415. PubMed ID: 32227994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.