These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 30968518)

  • 1. Formation of Twinned Graphene Polycrystals.
    Dong J; Geng D; Liu F; Ding F
    Angew Chem Int Ed Engl; 2019 Jun; 58(23):7723-7727. PubMed ID: 30968518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth and Selective Etching of Twinned Graphene on Liquid Copper Surface.
    Liu F; Dong J; Kim NY; Lee Z; Ding F
    Small; 2021 Oct; 17(40):e2103484. PubMed ID: 34514727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical vapor deposition of graphene single crystals.
    Yan Z; Peng Z; Tour JM
    Acc Chem Res; 2014 Apr; 47(4):1327-37. PubMed ID: 24527957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-crystal two-dimensional material epitaxy on tailored non-single-crystal substrates.
    Li X; Wu G; Zhang L; Huang D; Li Y; Zhang R; Li M; Zhu L; Guo J; Huang T; Shen J; Wei X; Yu KM; Dong J; Altman MS; Ruoff RS; Duan Y; Yu J; Wang Z; Huang X; Ding F; Shi H; Tang W
    Nat Commun; 2022 Apr; 13(1):1773. PubMed ID: 35365650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controllable Fabrication of Graphene and Related Two-Dimensional Materials on Liquid Metals via Chemical Vapor Deposition.
    Zeng M; Fu L
    Acc Chem Res; 2018 Nov; 51(11):2839-2847. PubMed ID: 30222313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Influence of Cu Lattices on the Structure and Electrical Properties of Graphene Domains during Low-Pressure Chemical Vapor Deposition.
    Kim DW; Kim SJ; Kim JS; Shin M; Kim GT; Jung HT
    Chemphyschem; 2015 Apr; 16(6):1165-71. PubMed ID: 25470249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Topochemistry of Bowtie- and Star-Shaped Metal Dichalcogenide Nanoisland Formation.
    Artyukhov VI; Hu Z; Zhang Z; Yakobson BI
    Nano Lett; 2016 Jun; 16(6):3696-702. PubMed ID: 27187078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-quality monolayer graphene synthesis on Pd foils via the suppression of multilayer growth at grain boundaries.
    Ma D; Liu M; Gao T; Li C; Sun J; Nie Y; Ji Q; Zhang Y; Song X; Zhang Y; Liu Z
    Small; 2014 Oct; 10(19):4003-11. PubMed ID: 24913919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrafast Transition of Nonuniform Graphene to High-Quality Uniform Monolayer Films on Liquid Cu.
    Xin X; Xu C; Zhang D; Liu Z; Ma W; Qian X; Chen ML; Du J; Cheng HM; Ren W
    ACS Appl Mater Interfaces; 2019 May; 11(19):17629-17636. PubMed ID: 31026138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of the Cu substrate in the growth of ultra-flat crack-free highly-crystalline single-layer graphene.
    Huet B; Raskin JP
    Nanoscale; 2018 Nov; 10(46):21898-21909. PubMed ID: 30431636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Step-Edge-Guided Nucleation and Growth of Aligned WSe2 on Sapphire via a Layer-over-Layer Growth Mode.
    Chen L; Liu B; Ge M; Ma Y; Abbas AN; Zhou C
    ACS Nano; 2015 Aug; 9(8):8368-75. PubMed ID: 26221865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nondestructive optical visualisation of graphene domains and boundaries.
    Wu X; Zhong G; Robertson J
    Nanoscale; 2016 Sep; 8(36):16427-16434. PubMed ID: 27722630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rotated domains in chemical vapor deposition-grown monolayer graphene on Cu(111): an angle-resolved photoemission study.
    Jeon C; Hwang HN; Lee WG; Jung YG; Kim KS; Park CY; Hwang CC
    Nanoscale; 2013 Sep; 5(17):8210-4. PubMed ID: 23863869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Coalescence Behavior of Two-Dimensional Materials Revealed by Multiscale
    Wang ZJ; Dong J; Li L; Dong G; Cui Y; Yang Y; Wei W; Blume R; Li Q; Wang L; Xu X; Liu K; Barroo C; Frenken JWM; Fu Q; Bao X; Schlögl R; Ding F; Willinger MG
    ACS Nano; 2020 Feb; 14(2):1902-1918. PubMed ID: 32031780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled synthesis of 2D Mo
    Sun W; Wang X; Feng J; Li T; Huan Y; Qiao J; He L; Ma D
    Nanotechnology; 2019 Sep; 30(38):385601. PubMed ID: 31234161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Review of chemical vapor deposition of graphene and related applications.
    Zhang Y; Zhang L; Zhou C
    Acc Chem Res; 2013 Oct; 46(10):2329-39. PubMed ID: 23480816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isotropic Growth of Graphene toward Smoothing Stitching.
    Zeng M; Tan L; Wang L; Mendes RG; Qin Z; Huang Y; Zhang T; Fang L; Zhang Y; Yue S; Rümmeli MH; Peng L; Liu Z; Chen S; Fu L
    ACS Nano; 2016 Jul; 10(7):7189-96. PubMed ID: 27403842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suppression of grain boundaries in graphene growth on superstructured Mn-Cu(111) surface.
    Chen W; Chen H; Lan H; Cui P; Schulze TP; Zhu W; Zhang Z
    Phys Rev Lett; 2012 Dec; 109(26):265507. PubMed ID: 23368584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Charge transport in polycrystalline graphene: challenges and opportunities.
    Cummings AW; Duong DL; Nguyen VL; Van Tuan D; Kotakoski J; Barrios Vargas JE; Lee YH; Roche S
    Adv Mater; 2014 Aug; 26(30):5079-94. PubMed ID: 24903153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controllable Growth of Graphene on Liquid Surfaces.
    Liu J; Fu L
    Adv Mater; 2019 Mar; 31(9):e1800690. PubMed ID: 30536644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.