BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 30968618)

  • 1. Mitochondrial Dysfunction in Adipocytes as a Primary Cause of Adipose Tissue Inflammation.
    Woo CY; Jang JE; Lee SE; Koh EH; Lee KU
    Diabetes Metab J; 2019 Jun; 43(3):247-256. PubMed ID: 30968618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial function/dysfunction in white adipose tissue.
    Boudina S; Graham TE
    Exp Physiol; 2014 Sep; 99(9):1168-78. PubMed ID: 25128326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial dysfunction leads to impairment of insulin sensitivity and adiponectin secretion in adipocytes.
    Wang CH; Wang CC; Huang HC; Wei YH
    FEBS J; 2013 Feb; 280(4):1039-50. PubMed ID: 23253816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 11β-HSD1 reduces metabolic efficacy and adiponectin synthesis in hypertrophic adipocytes.
    Koh EH; Kim AR; Kim H; Kim JH; Park HS; Ko MS; Kim MO; Kim HJ; Kim BJ; Yoo HJ; Kim SJ; Oh JS; Woo CY; Jang JE; Leem J; Cho MH; Lee KU
    J Endocrinol; 2015 Jun; 225(3):147-58. PubMed ID: 25869616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NAD
    Porter LC; Franczyk MP; Pietka T; Yamaguchi S; Lin JB; Sasaki Y; Verdin E; Apte RS; Yoshino J
    Am J Physiol Endocrinol Metab; 2018 Oct; 315(4):E520-E530. PubMed ID: 29634313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellular hypoxia and adipose tissue dysfunction in obesity.
    Wood IS; de Heredia FP; Wang B; Trayhurn P
    Proc Nutr Soc; 2009 Nov; 68(4):370-7. PubMed ID: 19698203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hypoxia and adipose tissue function and dysfunction in obesity.
    Trayhurn P
    Physiol Rev; 2013 Jan; 93(1):1-21. PubMed ID: 23303904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Novel Model of Diabetic Complications: Adipocyte Mitochondrial Dysfunction Triggers Massive β-Cell Hyperplasia.
    Kusminski CM; Ghaben AL; Morley TS; Samms RJ; Adams AC; An Y; Johnson JA; Joffin N; Onodera T; Crewe C; Holland WL; Gordillo R; Scherer PE
    Diabetes; 2020 Mar; 69(3):313-330. PubMed ID: 31882562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stimulation of mitochondrial oxidative capacity in white fat independent of UCP1: a key to lean phenotype.
    Flachs P; Rossmeisl M; Kuda O; Kopecky J
    Biochim Biophys Acta; 2013 May; 1831(5):986-1003. PubMed ID: 23454373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. White adipose tissue mitochondrial metabolism in health and in obesity.
    Heinonen S; Jokinen R; Rissanen A; Pietiläinen KH
    Obes Rev; 2020 Feb; 21(2):e12958. PubMed ID: 31777187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Omega-3 fatty acids and adipose tissue biology.
    Kuda O; Rossmeisl M; Kopecky J
    Mol Aspects Med; 2018 Dec; 64():147-160. PubMed ID: 29329795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial dysfunction and activation of iNOS are responsible for the palmitate-induced decrease in adiponectin synthesis in 3T3L1 adipocytes.
    Jeon MJ; Leem J; Ko MS; Jang JE; Park HS; Kim HS; Kim M; Kim EH; Yoo HJ; Lee CH; Park IS; Lee KU; Koh EH
    Exp Mol Med; 2012 Sep; 44(9):562-70. PubMed ID: 22809900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondria and endocrine function of adipose tissue.
    Medina-Gómez G
    Best Pract Res Clin Endocrinol Metab; 2012 Dec; 26(6):791-804. PubMed ID: 23168280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Essential role of mitochondrial function in adiponectin synthesis in adipocytes.
    Koh EH; Park JY; Park HS; Jeon MJ; Ryu JW; Kim M; Kim SY; Kim MS; Kim SW; Park IS; Youn JH; Lee KU
    Diabetes; 2007 Dec; 56(12):2973-81. PubMed ID: 17827403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adipose-Specific Deficiency of Fumarate Hydratase in Mice Protects Against Obesity, Hepatic Steatosis, and Insulin Resistance.
    Yang H; Wu JW; Wang SP; Severi I; Sartini L; Frizzell N; Cinti S; Yang G; Mitchell GA
    Diabetes; 2016 Nov; 65(11):3396-3409. PubMed ID: 27554470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-fat diet feeding induces a depot-dependent response on the pro-inflammatory state and mitochondrial function of gonadal white adipose tissue.
    Amengual-Cladera E; Lladó I; Proenza AM; Gianotti M
    Br J Nutr; 2013 Feb; 109(3):413-24. PubMed ID: 22717037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cdkal1, a type 2 diabetes susceptibility gene, regulates mitochondrial function in adipose tissue.
    Palmer CJ; Bruckner RJ; Paulo JA; Kazak L; Long JZ; Mina AI; Deng Z; LeClair KB; Hall JA; Hong S; Zushin PH; Smith KL; Gygi SP; Hagen S; Cohen DE; Banks AS
    Mol Metab; 2017 Oct; 6(10):1212-1225. PubMed ID: 29031721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amelioration of diet-induced metabolic syndrome and fatty liver with sitagliptin via regulation of adipose tissue inflammation and hepatic Adiponectin/AMPK levels in mice.
    Prakash S; Rai U; Kosuru R; Tiwari V; Singh S
    Biochimie; 2020 Jan; 168():198-209. PubMed ID: 31715215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fetal development of subcutaneous white adipose tissue is dependent on Zfp423.
    Shao M; Hepler C; Vishvanath L; MacPherson KA; Busbuso NC; Gupta RK
    Mol Metab; 2017 Jan; 6(1):111-124. PubMed ID: 28123942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bilobalide attenuates hypoxia induced oxidative stress, inflammation, and mitochondrial dysfunctions in 3T3-L1 adipocytes via its antioxidant potential.
    Priyanka A; Nisha VM; Anusree SS; Raghu KG
    Free Radic Res; 2014 Oct; 48(10):1206-17. PubMed ID: 25039303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.