These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 30968696)

  • 21. A comparative analysis of vehicle-related greenhouse gas emissions between organic and conventional dairy production.
    Aggestam V; Buick J
    J Dairy Res; 2017 Aug; 84(3):360-369. PubMed ID: 28831965
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Life cycle of meats: an opportunity to abate the greenhouse gas emission from meat industry in Japan.
    Roy P; Orikasa T; Thammawong M; Nakamura N; Xu Q; Shiina T
    J Environ Manage; 2012 Jan; 93(1):218-24. PubMed ID: 22054588
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mitigation of Multiple Environmental Footprints for China's Pig Production Using Different Land Use Strategies.
    Long W; Wang H; Hou Y; Chadwick D; Ma Y; Cui Z; Zhang F
    Environ Sci Technol; 2021 Apr; 55(8):4440-4451. PubMed ID: 33793238
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Life cycle energy and greenhouse gas analysis of a large-scale vertically integrated organic dairy in the United States.
    Heller MC; Keoleian GA
    Environ Sci Technol; 2011 Mar; 45(5):1903-10. PubMed ID: 21348530
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Red meat production in australia: life cycle assessment and comparison with overseas studies.
    Peters GM; Rowley HV; Wiedemann S; Tucker R; Short MD; Schulz M
    Environ Sci Technol; 2010 Feb; 44(4):1327-32. PubMed ID: 20067280
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Beef production in balance: considerations for life cycle analyses.
    Place SE; Mitloehner FM
    Meat Sci; 2012 Nov; 92(3):179-81. PubMed ID: 22551868
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The carbon footprint of integrated milk production and renewable energy systems - A case study.
    Vida E; Tedesco DEA
    Sci Total Environ; 2017 Dec; 609():1286-1294. PubMed ID: 28793397
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Feeding strategies and manure management for cost-effective mitigation of greenhouse gas emissions from dairy farms in Wisconsin.
    Dutreuil M; Wattiaux M; Hardie CA; Cabrera VE
    J Dairy Sci; 2014 Sep; 97(9):5904-17. PubMed ID: 24996278
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Livestock greenhouse gas emissions and mitigation potential in Europe.
    Bellarby J; Tirado R; Leip A; Weiss F; Lesschen JP; Smith P
    Glob Chang Biol; 2013 Jan; 19(1):3-18. PubMed ID: 23504717
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Action plan for the mitigation of greenhouse gas emissions in the hospital-based health care of the Hellenic Army.
    Bozoudis V; Sebos I; Tsakanikas A
    Environ Monit Assess; 2022 Feb; 194(3):221. PubMed ID: 35211813
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Role of Industrial Parks in Mitigating Greenhouse Gas Emissions from China.
    Guo Y; Tian J; Zang N; Gao Y; Chen L
    Environ Sci Technol; 2018 Jul; 52(14):7754-7762. PubMed ID: 29902379
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The relevance of supply chain characteristics in GHG emissions: The carbon footprint of Maltese juices.
    Roibás L; Rodríguez-García S; Valdramidis VP; Hospido A
    Food Res Int; 2018 May; 107():747-754. PubMed ID: 29580543
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Carbon footprint as an environmental sustainability indicator for the particleboard produced in Pakistan.
    Hussain M; Naseem Malik R; Taylor A
    Environ Res; 2017 May; 155():385-393. PubMed ID: 28288441
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Greenhouse gas emissions, carbon leakage and net carbon sequestration from afforestation and forest management: A review.].
    Liu BJ; Lu F; Wang XK; Liu WW
    Ying Yong Sheng Tai Xue Bao; 2017 Feb; 28(2):673-688. PubMed ID: 29749178
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Integration of ecosystem services into the carbon footprint of milk of South German dairy farms.
    Robert Kiefer L; Menzel F; Bahrs E
    J Environ Manage; 2015 Apr; 152():11-8. PubMed ID: 25602922
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Halving food-related greenhouse gas emissions can be achieved by redistributing meat consumption: Progressive optimization results of the NutriNet-Santé cohort.
    Kesse-Guyot E; Fouillet H; Baudry J; Dussiot A; Langevin B; Allès B; Rebouillat P; Brunin J; Touvier M; Hercberg S; Lairon D; Mariotti F; Pointereau P
    Sci Total Environ; 2021 Oct; 789():147901. PubMed ID: 34052500
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Climate change mitigation opportunities based on carbon footprint estimates of dietary patterns in Peru.
    Vázquez-Rowe I; Larrea-Gallegos G; Villanueva-Rey P; Gilardino A
    PLoS One; 2017; 12(11):e0188182. PubMed ID: 29145461
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Greenhouse gas emissions during MSW landfilling in China: influence of waste characteristics and LFG treatment measures.
    Yang N; Zhang H; Shao LM; Lü F; He PJ
    J Environ Manage; 2013 Nov; 129():510-21. PubMed ID: 24018116
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The greenhouse gas footprints of China's food production and consumption (1987-2017).
    Zhang H; Xu Y; Lahr ML
    J Environ Manage; 2022 Jan; 301():113934. PubMed ID: 34731952
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Does increasing milk yield per cow reduce greenhouse gas emissions? A system approach.
    Zehetmeier M; Baudracco J; Hoffmann H; Heißenhuber A
    Animal; 2012 Jan; 6(1):154-66. PubMed ID: 22436163
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.