These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 30968771)

  • 41. Trader as a new optimization algorithm predicts drug-target interactions efficiently.
    Masoudi-Sobhanzadeh Y; Omidi Y; Amanlou M; Masoudi-Nejad A
    Sci Rep; 2019 Jun; 9(1):9348. PubMed ID: 31249365
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Computational Prediction of Drug-Target Interactions via Ensemble Learning.
    Ezzat A; Wu M; Li X; Kwoh CK
    Methods Mol Biol; 2019; 1903():239-254. PubMed ID: 30547446
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Current status and future prospects of drug-target interaction prediction.
    Ru X; Ye X; Sakurai T; Zou Q; Xu L; Lin C
    Brief Funct Genomics; 2021 Sep; 20(5):312-322. PubMed ID: 34189559
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Improved prediction of drug-target interactions based on ensemble learning with fuzzy local ternary pattern.
    Zhao ZY; Huang WZ; Zhan XK; Huang YA; Zhang SW; Yu CQ
    Front Biosci (Landmark Ed); 2021 Jul; 26(7):222-234. PubMed ID: 34340269
    [No Abstract]   [Full Text] [Related]  

  • 45. De Novo Prediction of Drug-Target Interactions Using Laplacian Regularized Schatten
    Wu G; Yang M; Li Y; Wang J
    J Comput Biol; 2021 Jul; 28(7):660-673. PubMed ID: 33481664
    [No Abstract]   [Full Text] [Related]  

  • 46. Boosting compound-protein interaction prediction by deep learning.
    Tian K; Shao M; Wang Y; Guan J; Zhou S
    Methods; 2016 Nov; 110():64-72. PubMed ID: 27378654
    [TBL] [Abstract][Full Text] [Related]  

  • 47. PreDTIs: prediction of drug-target interactions based on multiple feature information using gradient boosting framework with data balancing and feature selection techniques.
    Mahmud SMH; Chen W; Liu Y; Awal MA; Ahmed K; Rahman MH; Moni MA
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33709119
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Improved Prediction of Drug-Target Interactions Using Self-Paced Learning with Collaborative Matrix Factorization.
    Xia LY; Yang ZY; Zhang H; Liang Y
    J Chem Inf Model; 2019 Jul; 59(7):3340-3351. PubMed ID: 31260620
    [TBL] [Abstract][Full Text] [Related]  

  • 49. In silico prediction of drug-target interaction networks based on drug chemical structure and protein sequences.
    Li Z; Han P; You ZH; Li X; Zhang Y; Yu H; Nie R; Chen X
    Sci Rep; 2017 Sep; 7(1):11174. PubMed ID: 28894115
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Machine learning prediction of oncology drug targets based on protein and network properties.
    Dezső Z; Ceccarelli M
    BMC Bioinformatics; 2020 Mar; 21(1):104. PubMed ID: 32171238
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Bridging-BPs: a novel approach to predict potential drug-target interactions based on a bridging heterogeneous graph and BPs2vec.
    Li G; Zhang P; Sun W; Ren C; Wang L
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35037024
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Identification of potential drug-targets by combining evolutionary information extracted from frequency profiles and molecular topological structures.
    Wang L; You ZH; Li LP; Yan X; Zhang W; Song KJ; Song CD
    Chem Biol Drug Des; 2020 Aug; 96(2):758-767. PubMed ID: 31393672
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Open-source chemogenomic data-driven algorithms for predicting drug-target interactions.
    Hao M; Bryant SH; Wang Y
    Brief Bioinform; 2019 Jul; 20(4):1465-1474. PubMed ID: 29420684
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Application of network link prediction in drug discovery.
    Abbas K; Abbasi A; Dong S; Niu L; Yu L; Chen B; Cai SM; Hasan Q
    BMC Bioinformatics; 2021 Apr; 22(1):187. PubMed ID: 33845763
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Deep-Learning-Based Drug-Target Interaction Prediction.
    Wen M; Zhang Z; Niu S; Sha H; Yang R; Yun Y; Lu H
    J Proteome Res; 2017 Apr; 16(4):1401-1409. PubMed ID: 28264154
    [TBL] [Abstract][Full Text] [Related]  

  • 56. An Ensemble Learning-Based Method for Inferring Drug-Target Interactions Combining Protein Sequences and Drug Fingerprints.
    Zhao ZY; Huang WZ; Zhan XK; Pan J; Huang YA; Zhang SW; Yu CQ
    Biomed Res Int; 2021; 2021():9933873. PubMed ID: 33987446
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Identification of Drug-Side Effect Association via Semisupervised Model and Multiple Kernel Learning.
    Ding Y; Tang J; Guo F
    IEEE J Biomed Health Inform; 2019 Nov; 23(6):2619-2632. PubMed ID: 30507518
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Machine learning approaches and databases for prediction of drug-target interaction: a survey paper.
    Bagherian M; Sabeti E; Wang K; Sartor MA; Nikolovska-Coleska Z; Najarian K
    Brief Bioinform; 2021 Jan; 22(1):247-269. PubMed ID: 31950972
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Drug-target interaction prediction using unifying of graph regularized nuclear norm with bilinear factorization.
    Sorkhi AG; Abbasi Z; Mobarakeh MI; Pirgazi J
    BMC Bioinformatics; 2021 Nov; 22(1):555. PubMed ID: 34789169
    [TBL] [Abstract][Full Text] [Related]  

  • 60. An efficient computational method for predicting drug-target interactions using weighted extreme learning machine and speed up robot features.
    An JY; Meng FR; Yan ZJ
    BioData Min; 2021 Jan; 14(1):3. PubMed ID: 33472664
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.