BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 30968985)

  • 1. Metabolism of hyperpolarized
    Chen W; Sharma G; Jiang W; Maptue NR; Malloy CR; Sherry AD; Khemtong C
    NMR Biomed; 2019 Jun; 32(6):e4091. PubMed ID: 30968985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct assessment of renal mitochondrial redox state using hyperpolarized
    von Morze C; Ohliger MA; Marco-Rius I; Wilson DM; Flavell RR; Pearce D; Vigneron DB; Kurhanewicz J; Wang ZJ
    Magn Reson Med; 2018 Apr; 79(4):1862-1869. PubMed ID: 29314217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Co-Polarized [1-
    Sharma G; Wen X; Maptue NR; Hever T; Malloy CR; Sherry AD; Khemtong C
    ACS Sens; 2021 Nov; 6(11):3967-3977. PubMed ID: 34761912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo investigation of hyperpolarized [1,3-
    Najac C; Radoul M; Le Page LM; Batsios G; Subramani E; Viswanath P; Gillespie AM; Ronen SM
    Sci Rep; 2019 Mar; 9(1):3402. PubMed ID: 30833594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hyperpolarized ketone body metabolism in the rat heart.
    Miller JJ; Ball DR; Lau AZ; Tyler DJ
    NMR Biomed; 2018 Jun; 31(6):e3912. PubMed ID: 29637642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The redox state of the nicotinamide-adenine dinucleotides in rat liver homogenates.
    Krebs HA; Gascoyne T
    Biochem J; 1968 Jul; 108(4):513-20. PubMed ID: 4299127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the interdependence of ketone body oxidation, glycogen content, glycolysis and energy metabolism in the heart.
    Kadir AA; Stubbs BJ; Chong CR; Lee H; Cole M; Carr C; Hauton D; McCullagh J; Evans RD; Clarke K
    J Physiol; 2023 Apr; 601(7):1207-1224. PubMed ID: 36799478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of chronic diabetes and physiological insulin concentration on ketone bodies metabolism in the heart.
    Sultan AM
    Diabetes Res; 1994; 27(2):47-60. PubMed ID: 7671554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of the beta-hydroxybutyrate/acetoacetate ratio on the redox states of mitochondrial NAD(P) and cytochrome c systems, extramitochondrial ATP/ADP ratio and the respiration of isolated liver mitochondria in the resting state.
    Schönfeld P; Bohnensack R; Böhme G; Kunz W
    Biomed Biochim Acta; 1983; 42(1):3-13. PubMed ID: 6309158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of increased mechanical work by isolated perfused rat heart during production or uptake of ketone bodies. Assessment of mitochondrial oxidized to reduced free nicotinamide-adenine dinucleotide ratios and oxaloacetate concentrations.
    Opie LH; Owen P
    Biochem J; 1975 Jun; 148(3):403-15. PubMed ID: 173281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validation of a Gas Chromatography-Mass Spectrometry Method for the Measurement of the Redox State Metabolic Ratios Lactate/Pyruvate and β-Hydroxybutyrate/Acetoacetate in Biological Samples.
    Wijngaard R; Perramón M; Parra-Robert M; Hidalgo S; Butrico G; Morales-Ruiz M; Zeng M; Casals E; Jiménez W; Fernández-Varo G; Shulman GI; Cline GW; Casals G
    Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33946157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cerebral mitochondrial redox states during metabolic stress in the immature rat.
    Vannucci RC; Brucklacher RM
    Brain Res; 1994 Aug; 653(1-2):141-7. PubMed ID: 7982046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complex I-mediated reactive oxygen species generation: modulation by cytochrome c and NAD(P)+ oxidation-reduction state.
    Kushnareva Y; Murphy AN; Andreyev A
    Biochem J; 2002 Dec; 368(Pt 2):545-53. PubMed ID: 12180906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interrelation between mitochondrial respiration, substrate supply and redox ratio in perifused permeabilized rat hepatocytes.
    Boschmann M; Halangk W; Bohnensack R
    Biochim Biophys Acta; 1996 Mar; 1273(3):223-30. PubMed ID: 8616160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anisoosmostic liver perfusion: redox shifts and modulation of alpha-ketoisocaproate and glycine metabolism.
    Häussinger D; Stoll B; Morimoto Y; Lang F; Gerok W
    Biol Chem Hoppe Seyler; 1992 Aug; 373(8):723-34. PubMed ID: 1418686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of diabetes and insulin on ketone bodies metabolism in heart.
    Sultan AM
    Mol Cell Biochem; 1992 Mar; 110(1):17-23. PubMed ID: 1579130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prooxidant activity of fisetin: effects on energy metabolism in the rat liver.
    Constantin RP; Constantin J; Pagadigorria CL; Ishii-Iwamoto EL; Bracht A; de Castro CV; Yamamoto NS
    J Biochem Mol Toxicol; 2011; 25(2):117-26. PubMed ID: 20957679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial redox state as a potential detector of liver dysoxia in vivo.
    Dishart MK; Schlichtig R; Tonnessen TI; Rozenfeld RA; Simplaceanu E; Williams D; Gayowski TJ
    J Appl Physiol (1985); 1998 Mar; 84(3):791-7. PubMed ID: 9480934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. D-3-hydroxybutyrate metabolism in the perfused rat heart.
    Sultan AM
    Mol Cell Biochem; 1988 Feb; 79(2):113-8. PubMed ID: 3398833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Short-term fasting reduces the extent of myocardial infarction and incidence of reperfusion arrhythmias in rats.
    Snorek M; Hodyc D; Sedivý V; Durišová J; Skoumalová A; Wilhelm J; Neckář J; Kolář F; Herget J
    Physiol Res; 2012; 61(6):567-74. PubMed ID: 23098657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.