These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 30969001)

  • 1. Polyamide/PEG Blends as Biocompatible Biomaterials for the Convenient Regulation of Cell Adhesion and Growth.
    Winnacker M; Beringer AJG; Gronauer TF; Güngör HH; Reinschlüssel L; Rieger B; Sieber SA
    Macromol Rapid Commun; 2019 Jun; 40(12):e1900091. PubMed ID: 30969001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyamides and their functionalization: recent concepts for their applications as biomaterials.
    Winnacker M
    Biomater Sci; 2017 Jun; 5(7):1230-1235. PubMed ID: 28561076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The physico-chemistry of adhesions of protein resistant and weak polyelectrolyte brushes to cells and tissues.
    Cozens EJ; Kong D; Roohpour N; Gautrot JE
    Soft Matter; 2020 Jan; 16(2):505-522. PubMed ID: 31804646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nylon-3 copolymers that generate cell-adhesive surfaces identified by library screening.
    Lee MR; Stahl SS; Gellman SH; Masters KS
    J Am Chem Soc; 2009 Nov; 131(46):16779-89. PubMed ID: 19886604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Customized PEG-derived copolymers for tissue-engineering applications.
    Tessmar JK; Göpferich AM
    Macromol Biosci; 2007 Jan; 7(1):23-39. PubMed ID: 17195277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biocompatibility properties of polyamide 6/PCL blends composite textile scaffold using EA.hy926 human endothelial cells.
    Abdal-Hay A; Abdelrazek Khalil K; Al-Jassir FF; Gamal-Eldeen AM
    Biomed Mater; 2017 May; 12(3):035002. PubMed ID: 28238969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface modification of copolymerized films from three-armed biodegradable macromers - An analytical platform for modified tissue engineering scaffolds.
    Müller BM; Loth R; Hoffmeister PG; Zühl F; Kalbitzer L; Hacker MC; Schulz-Siegmund M
    Acta Biomater; 2017 Mar; 51():148-160. PubMed ID: 28069495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A review of emerging bone tissue engineering via PEG conjugated biodegradable amphiphilic copolymers.
    Wang JZ; You ML; Ding ZQ; Ye WB
    Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():1021-1035. PubMed ID: 30678893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of Bioresorbable Hydrophilic-Hydrophobic Electrospun Scaffolds for Neural Tissue Engineering.
    Lins LC; Wianny F; Livi S; Hidalgo IA; Dehay C; Duchet-Rumeau J; Gérard JF
    Biomacromolecules; 2016 Oct; 17(10):3172-3187. PubMed ID: 27629596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular responses to electrospun membranes made from blends of PLLGA with PEG and PLLGA-b-PEG.
    Ma C; Pang D; Xiong Z; Bai W; Xiong C
    J Biomed Mater Res A; 2012 Nov; 100(11):2897-904. PubMed ID: 22696182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functionalization of nylon membranes via surface-initiated atom-transfer radical polymerization.
    Xu FJ; Zhao JP; Kang ET; Neoh KG; Li J
    Langmuir; 2007 Jul; 23(16):8585-92. PubMed ID: 17622163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sustainable Chiral Polyamides with High Melting Temperature via Enhanced Anionic Polymerization of a Menthone-Derived Lactam.
    Winnacker M; Neumeier M; Zhang X; Papadakis CM; Rieger B
    Macromol Rapid Commun; 2016 May; 37(10):851-7. PubMed ID: 26992085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polylysine-modified PEG-based hydrogels to enhance the neuro-electrode interface.
    Rao SS; Han N; Winter JO
    J Biomater Sci Polym Ed; 2011; 22(4-6):611-25. PubMed ID: 20566048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nylons with Applications in Energy Generators, 3D Printing and Biomedicine.
    Arioli M; Puiggalí J; Franco L
    Molecules; 2024 May; 29(11):. PubMed ID: 38893319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membranes from acrylonitrile-based polymers for selective cultivation of human keratinocytes.
    Boese G; Trimpert C; Albrecht W; Malsch G; Groth T; Lendlein A
    Tissue Eng; 2007 Dec; 13(12):2995-3002. PubMed ID: 17941802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nylon-3 polymers that enable selective culture of endothelial cells.
    Liu R; Chen X; Gellman SH; Masters KS
    J Am Chem Soc; 2013 Nov; 135(44):16296-9. PubMed ID: 24156536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-term in vivo effect of PEG bone tissue engineering scaffolds.
    Engebretson B; Sikavitsas VI
    J Long Term Eff Med Implants; 2012; 22(3):211-8. PubMed ID: 23582112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The fibroblast response to tubes exhibiting internal nanotopography.
    Berry CC; Dalby MJ; McCloy D; Affrossman S
    Biomaterials; 2005 Aug; 26(24):4985-92. PubMed ID: 15769534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photo-crosslinked fabrication of novel biocompatible and elastomeric star-shaped inositol-based polymer with highly tunable mechanical behavior and degradation.
    Xie M; Ge J; Xue Y; Du Y; Lei B; Ma PX
    J Mech Behav Biomed Mater; 2015 Nov; 51():163-8. PubMed ID: 26253207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile modulation of cell adhesion to a poly(ethylene glycol) diacrylate film with incorporation of polystyrene nano-spheres.
    Yang W; Yu H; Li G; Wang Y; Liu L
    Biomed Microdevices; 2016 Dec; 18(6):107. PubMed ID: 27830453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.