These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 30969013)

  • 21. Responsive linear-dendritic block copolymers.
    Blasco E; PiƱol M; Oriol L
    Macromol Rapid Commun; 2014 Jun; 35(12):1090-115. PubMed ID: 24706548
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrically-responsive core-shell hybrid microfibers for controlled drug release and cell culture.
    Chen C; Chen X; Zhang H; Zhang Q; Wang L; Li C; Dai B; Yang J; Liu J; Sun D
    Acta Biomater; 2017 Jun; 55():434-442. PubMed ID: 28392307
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microfluidic synthesis of microfibers for magnetic-responsive controlled drug release and cell culture.
    Lin YS; Huang KS; Yang CH; Wang CY; Yang YS; Hsu HC; Liao YJ; Tsai CW
    PLoS One; 2012; 7(3):e33184. PubMed ID: 22470443
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Necklace-Like Microfibers with Variable Knots and Perfusable Channels Fabricated by an Oil-Free Microfluidic Spinning Process.
    Xie R; Xu P; Liu Y; Li L; Luo G; Ding M; Liang Q
    Adv Mater; 2018 Apr; 30(14):e1705082. PubMed ID: 29484717
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microfluidic fabrication of complex-shaped microfibers by liquid template-aided multiphase microflow.
    Choi CH; Yi H; Hwang S; Weitz DA; Lee CS
    Lab Chip; 2011 Apr; 11(8):1477-83. PubMed ID: 21390381
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cooperative macromolecular self-assembly toward polymeric assemblies with multiple and bioactive functions.
    Zhang Z; Ma R; Shi L
    Acc Chem Res; 2014 Apr; 47(4):1426-37. PubMed ID: 24694280
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Focusing manipulation of microalgae in a microfluidic device using self-produced macromolecules.
    Kim MJ; Youn JR; Song YS
    Lab Chip; 2018 Mar; 18(7):1017-1025. PubMed ID: 29507921
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Macromolecular Brushes as Stabilizers of Hydrophobic Solute Nanoparticles.
    Luo H; Raciti D; Wang C; Herrera-Alonso M
    Mol Pharm; 2016 Jun; 13(6):1855-65. PubMed ID: 27035279
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microfluidic Generation of Bioinspired Spindle-knotted Graphene Microfibers for Oil Absorption.
    Wu Z; Wang J; Zhao Z; Yu Y; Shang L; Zhao Y
    Chemphyschem; 2018 Aug; 19(16):1990-1994. PubMed ID: 28929611
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Polyelectrolyte coating provides a facile route to suspend gold nanorods in polar organic solvents and hydrophobic polymers.
    Alkilany AM; Thompson LB; Murphy CJ
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3417-21. PubMed ID: 21067211
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Systematic investigation of preparing biocompatible, single, and small ZnS-Capped CdSe quantum dots with amphiphilic polymers.
    Anderson RE; Chan WC
    ACS Nano; 2008 Jul; 2(7):1341-52. PubMed ID: 19206301
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Design of capillary microfluidics for spinning cell-laden microfibers.
    Yu Y; Shang L; Guo J; Wang J; Zhao Y
    Nat Protoc; 2018 Nov; 13(11):2557-2579. PubMed ID: 30353174
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microfluidic generation of polydopamine gradients on hydrophobic surfaces.
    Shi X; Ostrovidov S; Shu Y; Liang X; Nakajima K; Wu H; Khademhosseini A
    Langmuir; 2014 Jan; 30(3):832-8. PubMed ID: 24358938
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fabrication of polymeric microfluidic devices with tunable wetting behavior for biomedical applications.
    Steidle NE; Schneider M; Ahrens R; Worgull M; Guber AE
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6659-62. PubMed ID: 24111270
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multifunctional polymeric microfibers with prolonged drug delivery and structural support capabilities.
    Lavin DM; Stefani RM; Zhang L; Furtado S; Hopkins RA; Mathiowitz E
    Acta Biomater; 2012 May; 8(5):1891-900. PubMed ID: 22326788
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microfluidic Fabrication of Natural Polymer-Based Scaffolds for Tissue Engineering Applications: A Review.
    Rosellini E; Cascone MG
    Biomimetics (Basel); 2023 Feb; 8(1):. PubMed ID: 36810405
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design and fabrication of uniquely shaped thiol-ene microfibers using a two-stage hydrodynamic focusing design.
    Boyd DA; Shields AR; Howell PB; Ligler FS
    Lab Chip; 2013 Aug; 13(15):3105-10. PubMed ID: 23756632
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bioinspired Multifunctional Spindle-Knotted Microfibers from Microfluidics.
    Shang L; Fu F; Cheng Y; Yu Y; Wang J; Gu Z; Zhao Y
    Small; 2017 Jan; 13(4):. PubMed ID: 27071374
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multifunctional Micro/Nanoscale Fibers Based on Microfluidic Spinning Technology.
    Du XY; Li Q; Wu G; Chen S
    Adv Mater; 2019 Dec; 31(52):e1903733. PubMed ID: 31573714
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Amphiphilic and Hydrophilic Block Copolymers from Aliphatic N-Substituted 8-Membered Cyclic Carbonates: A Versatile Macromolecular Platform for Biomedical Applications.
    Venkataraman S; Tan JP; Ng VW; Tan EW; Hedrick JL; Yang YY
    Biomacromolecules; 2017 Jan; 18(1):178-188. PubMed ID: 28064501
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.