These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 30969164)

  • 1. Therapeutic Effect of Novel Antidepressant Drugs Acting at Specific Receptors of Neurotransmitters and Neuropeptides.
    Werner FM; Coveñas R
    Curr Pharm Des; 2019; 25(4):388-395. PubMed ID: 30969164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monoaminergic and aminoacidergic receptors are involved in the antidepressant-like effect of ginsenoside Rb1 in mouse hippocampus (CA3) and prefrontal cortex.
    Wang GL; Wang YP; Zheng JY; Zhang LX
    Brain Res; 2018 Nov; 1699():44-53. PubMed ID: 29802841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Full central neurokinin-1 receptor blockade is required for efficacy in depression: evidence from orvepitant clinical studies.
    Ratti E; Bettica P; Alexander R; Archer G; Carpenter D; Evoniuk G; Gomeni R; Lawson E; Lopez M; Millns H; Rabiner EA; Trist D; Trower M; Zamuner S; Krishnan R; Fava M
    J Psychopharmacol; 2013 May; 27(5):424-34. PubMed ID: 23539641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pharmacological properties of glutamatergic drugs targeting NMDA receptors and their application in major depression.
    Serafini G; Pompili M; Innamorati M; Dwivedi Y; Brahmachari G; Girardi P
    Curr Pharm Des; 2013; 19(10):1898-922. PubMed ID: 23173582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GABA interneurons mediate the rapid antidepressant-like effects of scopolamine.
    Wohleb ES; Wu M; Gerhard DM; Taylor SR; Picciotto MR; Alreja M; Duman RS
    J Clin Invest; 2016 Jul; 126(7):2482-94. PubMed ID: 27270172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Classical neurotransmitters and neuropeptides involved in major depression in a multi-neurotransmitter system: a focus on antidepressant drugs.
    Werner FM; Coveñas R
    Curr Med Chem; 2013; 20(38):4853-8. PubMed ID: 24083608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neurotransmissions of antidepressant-like effects of neuromedin U-23 in mice.
    Tanaka M; Telegdy G
    Behav Brain Res; 2014 Feb; 259():196-9. PubMed ID: 24239690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. M1 acetylcholine receptors in somatostatin interneurons contribute to GABAergic and glutamatergic plasticity in the mPFC and antidepressant-like responses.
    Fogaça MV; Wu M; Li C; Li XY; Duman RS; Picciotto MR
    Neuropsychopharmacology; 2023 Aug; 48(9):1277-1287. PubMed ID: 37142667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Postsynaptic integration of cholinergic and dopaminergic signals on medium-sized GABAergic projection neurons in the neostriatum.
    Harsing LG; Zigmond MJ
    Brain Res Bull; 1998 Apr; 45(6):607-13. PubMed ID: 9566505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A review of ketamine in affective disorders: current evidence of clinical efficacy, limitations of use and pre-clinical evidence on proposed mechanisms of action.
    Naughton M; Clarke G; O'Leary OF; Cryan JF; Dinan TG
    J Affect Disord; 2014 Mar; 156():24-35. PubMed ID: 24388038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Galanin receptor antagonists : a potential novel pharmacological treatment for mood disorders.
    Ogren SO; Kuteeva E; Hökfelt T; Kehr J
    CNS Drugs; 2006; 20(8):633-54. PubMed ID: 16863269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emerging treatment mechanisms for depression: focus on glutamate and synaptic plasticity.
    Gerhard DM; Wohleb ES; Duman RS
    Drug Discov Today; 2016 Mar; 21(3):454-64. PubMed ID: 26854424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A hypothesis of monoamine (5-HT) - Glutamate/GABA long neural circuit: Aiming for fast-onset antidepressant discovery.
    Li YF
    Pharmacol Ther; 2020 Apr; 208():107494. PubMed ID: 31991195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular and Cellular Mechanisms of Rapid-Acting Antidepressants Ketamine and Scopolamine.
    Wohleb ES; Gerhard D; Thomas A; Duman RS
    Curr Neuropharmacol; 2017; 15(1):11-20. PubMed ID: 26955968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigational drugs for treating major depressive disorder.
    Dhir A
    Expert Opin Investig Drugs; 2017 Jan; 26(1):9-24. PubMed ID: 27960559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dextromethorphan as a potential rapid-acting antidepressant.
    Lauterbach EC
    Med Hypotheses; 2011 May; 76(5):717-9. PubMed ID: 21367535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ketamine treatment involves medial prefrontal cortex serotonin to induce a rapid antidepressant-like activity in BALB/cJ mice.
    Pham TH; Mendez-David I; Defaix C; Guiard BP; Tritschler L; David DJ; Gardier AM
    Neuropharmacology; 2017 Jan; 112(Pt A):198-209. PubMed ID: 27211253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methoxetamine: from drug of abuse to rapid-acting antidepressant.
    Coppola M; Mondola R
    Med Hypotheses; 2012 Oct; 79(4):504-7. PubMed ID: 22819129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Involvement of muscarinic receptor mechanisms in antidepressant drug action.
    Witkin JM; Smith JL; Golani LK; Brooks EA; Martin AE
    Adv Pharmacol; 2020; 89():311-356. PubMed ID: 32616212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification, biological characterization and pharmacophoric analysis of a new potent and selective NK1 receptor antagonist clinical candidate.
    Di Fabio R; Alvaro G; Braggio S; Carletti R; Gerrard PA; Griffante C; Marchioro C; Pozzan A; Melotto S; Poffe A; Piccoli L; Ratti E; Tranquillini E; Trower M; Spada S; Corsi M
    Bioorg Med Chem; 2013 Nov; 21(21):6264-73. PubMed ID: 24075145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.