These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 30969442)

  • 1. The Fate of Copper Added to Surface Water: Field, Laboratory, and Modeling Studies.
    Rader KJ; Carbonaro RF; van Hullebusch ED; Baken S; Delbeke K
    Environ Toxicol Chem; 2019 Jul; 38(7):1386-1399. PubMed ID: 30969442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling the Fate of Metal Concentrates in Surface Water.
    Carbonaro RF; Farley KJ; Delbeke K; Baken S; Arbildua JJ; Rodriguez PH; Rader KJ
    Environ Toxicol Chem; 2019 Jun; 38(6):1256-1272. PubMed ID: 30903662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pesticidal copper (I) oxide: environmental fate and aquatic toxicity.
    Kiaune L; Singhasemanon N
    Rev Environ Contam Toxicol; 2011; 213():1-26. PubMed ID: 21541846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Weight-of-Evidence Approach for Assessing Removal of Metals from the Water Column for Chronic Environmental Hazard Classification.
    Burton GA; Hudson ML; Huntsman P; Carbonaro RF; Rader KJ; Waeterschoot H; Baken S; Garman E
    Environ Toxicol Chem; 2019 Sep; 38(9):1839-1849. PubMed ID: 31099932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TICKET-UWM: a coupled kinetic, equilibrium, and transport screening model for metals in lakes.
    Farley KJ; Carbonaro RF; Fanelli CJ; Costanzo R; Rader KJ; Di Toro DM
    Environ Toxicol Chem; 2011 Jun; 30(6):1278-87. PubMed ID: 21381089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-term transformation and fate of manufactured ag nanoparticles in a simulated large scale freshwater emergent wetland.
    Lowry GV; Espinasse BP; Badireddy AR; Richardson CJ; Reinsch BC; Bryant LD; Bone AJ; Deonarine A; Chae S; Therezien M; Colman BP; Hsu-Kim H; Bernhardt ES; Matson CW; Wiesner MR
    Environ Sci Technol; 2012 Jul; 46(13):7027-36. PubMed ID: 22463850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recommended updates to the USEPA Framework for Metals Risk Assessment: Aquatic ecosystems.
    Adams WJ; Garman ER
    Integr Environ Assess Manag; 2024 Jul; 20(4):924-951. PubMed ID: 37578034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Indirect effects of climate change on zinc cycling in sediments: The role of changing water levels.
    Nedrich SM; Burton GA
    Environ Toxicol Chem; 2017 Sep; 36(9):2456-2464. PubMed ID: 28262986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Critical load analysis in hazard assessment of metals using a Unit World Model.
    Gandhi N; Bhavsar SP; Diamond ML
    Environ Toxicol Chem; 2011 Sep; 30(9):2157-66. PubMed ID: 21713970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined environmental risk assessment for the antiviral pharmaceuticals ganciclovir and valganciclovir in Europe.
    Straub JO
    Environ Toxicol Chem; 2017 Aug; 36(8):2205-2216. PubMed ID: 28198039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating the contaminant transport of heavy metals in estuarine waters.
    Liu WC; Liu HM; Ken PJ
    Environ Monit Assess; 2019 Dec; 192(1):31. PubMed ID: 31823064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the fate, transport and risk of Perfluorooctane Sulfonate (PFOS) in a coastal region of China using a multimedia model.
    Liu S; Lu Y; Xie S; Wang T; Jones KC; Sweetman AJ
    Environ Int; 2015 Dec; 85():15-26. PubMed ID: 26298835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a bioavailability-based risk assessment approach for nickel in freshwater sediments.
    Schlekat CE; Garman ER; Vangheluwe ML; Burton GA
    Integr Environ Assess Manag; 2016 Oct; 12(4):735-46. PubMed ID: 27640416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissipation of double-stranded RNA in aquatic microcosms.
    Albright VC; Wong CR; Hellmich RL; Coats JR
    Environ Toxicol Chem; 2017 May; 36(5):1249-1253. PubMed ID: 27731520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arsenic mobility in contaminated lake sediments.
    Nikolaidis NP; Dobbs GM; Chen J; Lackovic JA
    Environ Pollut; 2004 Jun; 129(3):479-87. PubMed ID: 15016468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological and chemical characterization of metal bioavailability in sediments from Lake Roosevelt, Columbia River, Washington, USA.
    Besser JM; Brumbaugh WG; Ivey CD; Ingersoll CG; Moran PW
    Arch Environ Contam Toxicol; 2008 May; 54(4):557-70. PubMed ID: 18060524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-term copper partitioning of metal-spiked sediments used in outdoor mesocosms.
    Gardham S; Hose GC; Simpson SL; Jarolimek C; Chariton AA
    Environ Sci Pollut Res Int; 2014; 21(11):7130-9. PubMed ID: 24557806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Speciation of Al, Fe, and P in recent sediment from three lakes in Maine, USA.
    Norton SA; Coolidge K; Amirbahman A; Bouchard R; Kopácek J; Reinhardt R
    Sci Total Environ; 2008 Oct; 404(2-3):276-83. PubMed ID: 18440053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Horizontal and vertical variability of mercury species in pore water and sediments in small lakes in Ontario.
    He T; Lu J; Yang F; Feng X
    Sci Total Environ; 2007 Nov; 386(1-3):53-64. PubMed ID: 17720225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Copper content in lake sediments as a tracer of urban emissions: evaluation through a source-transport-storage model.
    Cui Q; Brandt N; Sinha R; Malmström ME
    Sci Total Environ; 2010 Jun; 408(13):2714-25. PubMed ID: 20381126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.