BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 30969472)

  • 1. Assessments of Algal Toxicity and PBT Behaviour of Pesticides with No Eco-toxicological Data: Predictive Ability of QSA/(T)R Models.
    Gökçe S; Saçan MT
    Mol Inform; 2019 Aug; 38(8-9):e1800137. PubMed ID: 30969472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hazard assessment using an in-silico toxicity assessment of the transformation products of boscalid, pyraclostrobin, fenbuconazole and glyphosate generated by exposure to an advanced oxidative process.
    Skanes B; Warriner K; Prosser RS
    Toxicol In Vitro; 2021 Feb; 70():105049. PubMed ID: 33171224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toxic effects of boscalid on the growth, photosynthesis, antioxidant system and metabolism of Chlorella vulgaris.
    Qian L; Qi S; Cao F; Zhang J; Zhao F; Li C; Wang C
    Environ Pollut; 2018 Nov; 242(Pt A):171-181. PubMed ID: 29980035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-dependent degradation and toxicity of diclofop-methyl in algal suspensions : emerging contaminants.
    Cai X; Ye J; Sheng G; Liu W
    Environ Sci Pollut Res Int; 2009 Jun; 16(4):459-65. PubMed ID: 19052793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the aquatic toxicity of substituted phenols to Chlorella vulgaris: QSTR with an extended novel data set and interspecies models.
    Tugcu G; Ertürk MD; Saçan MT
    J Hazard Mater; 2017 Oct; 339():122-130. PubMed ID: 28641232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative performance of descriptors in a multiple linear and Kriging models: a case study on the acute toxicity of organic chemicals to algae.
    Tugcu G; Yilmaz HB; Saçan MT
    Environ Sci Pollut Res Int; 2014 Oct; 21(20):11924-32. PubMed ID: 24946708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An in silico algal toxicity model with a wide applicability potential for industrial chemicals and pharmaceuticals.
    Önlü S; Saçan MT
    Environ Toxicol Chem; 2017 Apr; 36(4):1012-1019. PubMed ID: 27617782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid toxicity prediction of organic chemicals to Chlorella vulgaris using quantitative structure-activity relationships methods.
    Xia B; Liu K; Gong Z; Zheng B; Zhang X; Fan B
    Ecotoxicol Environ Saf; 2009 Mar; 72(3):787-94. PubMed ID: 18950860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment and modeling of the novel toxicity data set of phenols to Chlorella vulgaris.
    Ertürk MD; Saçan MT
    Ecotoxicol Environ Saf; 2013 Apr; 90():61-8. PubMed ID: 23332417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relation of diclofop-methyl toxicity and degradation in algae cultures.
    Cai X; Liu W; Jin M; Lin K
    Environ Toxicol Chem; 2007 May; 26(5):970-5. PubMed ID: 17521144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. QSTR modeling for qualitative and quantitative toxicity predictions of diverse chemical pesticides in honey bee for regulatory purposes.
    Singh KP; Gupta S; Basant N; Mohan D
    Chem Res Toxicol; 2014 Sep; 27(9):1504-15. PubMed ID: 25167463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PBT assessment and prioritization by PBT Index and consensus modeling: comparison of screening results from structural models.
    Gramatica P; Cassani S; Sangion A
    Environ Int; 2015 Apr; 77():25-34. PubMed ID: 25617903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting Toxicities of Diverse Chemical Pesticides in Multiple Avian Species Using Tree-Based QSAR Approaches for Regulatory Purposes.
    Basant N; Gupta S; Singh KP
    J Chem Inf Model; 2015 Jul; 55(7):1337-48. PubMed ID: 26158470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A multipronged QSAR approach to predict algal low-toxic-effect concentrations of substituted phenols and anilines.
    Tugcu G; Saçan MT
    J Hazard Mater; 2018 Feb; 344():893-901. PubMed ID: 29190587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single and mixture toxicity of pharmaceuticals and chlorophenols to freshwater algae Chlorella vulgaris.
    Geiger E; Hornek-Gausterer R; Saçan MT
    Ecotoxicol Environ Saf; 2016 Jul; 129():189-98. PubMed ID: 27045919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enantioselective growth inhibition of the green algae (Chlorella vulgaris) induced by two paclobutrazol enantiomers.
    Liu C; Liu S; Diao J
    Environ Pollut; 2019 Jul; 250():610-617. PubMed ID: 31035143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toxicological effects of fungicide mixtures on the amphipod Austrochiltonia subtenuis.
    Vu HT; Keough MJ; Long SM; Pettigrove VJ
    Environ Toxicol Chem; 2017 Oct; 36(10):2651-2659. PubMed ID: 28370236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PBT assessment and prioritization of contaminants of emerging concern: Pharmaceuticals.
    Sangion A; Gramatica P
    Environ Res; 2016 May; 147():297-306. PubMed ID: 26921826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acute Rat and Mouse Oral Toxicity Determination of Anticholinesterase Inhibitor Carbamate Pesticides: A QSTR Approach.
    Roy PP; Banjare P; Verma S; Singh J
    Mol Inform; 2019 Aug; 38(8-9):e1800151. PubMed ID: 31066240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Quantitative Structure Activity Relationship for acute oral toxicity of pesticides on rats: Validation, domain of application and prediction.
    Hamadache M; Benkortbi O; Hanini S; Amrane A; Khaouane L; Si Moussa C
    J Hazard Mater; 2016 Feb; 303():28-40. PubMed ID: 26513561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.