BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 30969472)

  • 21. Multiple toxicity endpoint-structure relationships for substituted phenols and anilines.
    Yan F; Liu T; Jia Q; Wang Q
    Sci Total Environ; 2019 May; 663():560-567. PubMed ID: 30726764
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fast algal eco-toxicity assessment: Influence of light intensity and exposure time on Chlorella vulgaris inhibition by atrazine and DCMU.
    Camuel A; Guieysse B; Alcántara C; Béchet Q
    Ecotoxicol Environ Saf; 2017 Jun; 140():141-147. PubMed ID: 28254724
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Predicting aquatic toxicities of chemical pesticides in multiple test species using nonlinear QSTR modeling approaches.
    Basant N; Gupta S; Singh KP
    Chemosphere; 2015 Nov; 139():246-55. PubMed ID: 26142614
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Aquatic toxicity prediction of diverse pesticides on two algal species using QSTR modeling approach.
    Banjare P; Singh J; Papa E; Roy PP
    Environ Sci Pollut Res Int; 2023 Jan; 30(4):10599-10612. PubMed ID: 36083366
    [TBL] [Abstract][Full Text] [Related]  

  • 25. UV-visible degradation of boscalid--structural characterization of photoproducts and potential toxicity using in silico tests.
    Lassalle Y; Kinani A; Rifai A; Souissi Y; Clavaguera C; Bourcier S; Jaber F; Bouchonnet S
    Rapid Commun Mass Spectrom; 2014 May; 28(10):1153-63. PubMed ID: 24711278
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The utility of QSARs in predicting acute fish toxicity of pesticide metabolites: A retrospective validation approach.
    Burden N; Maynard SK; Weltje L; Wheeler JR
    Regul Toxicol Pharmacol; 2016 Oct; 80():241-6. PubMed ID: 27235557
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Potential carcinogenicity predicted by computational toxicity evaluation of thiophosphate pesticides using QSTR/QSCarciAR model.
    Petrescu AM; Ilia G
    Drug Chem Toxicol; 2017 Jul; 40(3):263-272. PubMed ID: 27461057
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular features and toxicological properties of four common pesticides, acetamiprid, deltamethrin, chlorpyriphos and fipronil.
    Taillebois E; Alamiddine Z; Brazier C; Graton J; Laurent AD; Thany SH; Le Questel JY
    Bioorg Med Chem; 2015 Apr; 23(7):1540-50. PubMed ID: 25716006
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differential sensitivity of three cyanobacterial and five green algal species to organotins and pyrethroids pesticides.
    Ma J
    Sci Total Environ; 2005 Apr; 341(1-3):109-17. PubMed ID: 15833245
    [TBL] [Abstract][Full Text] [Related]  

  • 30. QSTR with extended topochemical atom (ETA) indices. 9. Comparative QSAR for the toxicity of diverse functional organic compounds to Chlorella vulgaris using chemometric tools.
    Roy K; Ghosh G
    Chemosphere; 2007 Nov; 70(1):1-12. PubMed ID: 17765287
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bioaccumulation and toxicity of sediment associated herbicides (ioxynil, pendimethalin, and bentazone) in Lumbriculus variegatus (Oligochaeta) and Chironomus riparius (Insecta).
    Mäenpää KA; Sormunen AJ; Kukkonen JV
    Ecotoxicol Environ Saf; 2003 Nov; 56(3):398-410. PubMed ID: 14575680
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interaction patterns and combined toxic effects of acetamiprid in combination with seven pesticides on honey bee (Apis mellifera L.).
    Wang Y; Zhu YC; Li W
    Ecotoxicol Environ Saf; 2020 Mar; 190():110100. PubMed ID: 31869716
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanisms of developmental toxicity in zebrafish embryos (Danio rerio) induced by boscalid.
    Qian L; Cui F; Yang Y; Liu Y; Qi S; Wang C
    Sci Total Environ; 2018 Sep; 634():478-487. PubMed ID: 29631138
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The influence of salinity on the toxicity of selected sulfonamides and trimethoprim towards the green algae Chlorella vulgaris.
    Borecka M; Białk-Bielińska A; Haliński ŁP; Pazdro K; Stepnowski P; Stolte S
    J Hazard Mater; 2016 May; 308():179-86. PubMed ID: 26835894
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sensitivity of multiple life stages of 2 freshwater mussel species (Unionidae) to various pesticides detected in Ontario (Canada) surface waters.
    Salerno J; Bennett CJ; Holman E; Gillis PL; Sibley PK; Prosser RS
    Environ Toxicol Chem; 2018 Nov; 37(11):2871-2880. PubMed ID: 30094868
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Predictive classification-based QSTR models for toxicity study of diverse pesticides on multiple avian species.
    Banjare P; Singh J; Roy PP
    Environ Sci Pollut Res Int; 2021 Apr; 28(14):17992-18003. PubMed ID: 33410022
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Norm Index-Based QSAR Model for Acute Toxicity of Pesticides Toward Rainbow Trout.
    Jia Q; Liu T; Yan F; Wang Q
    Environ Toxicol Chem; 2020 Feb; 39(2):352-358. PubMed ID: 31634980
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Surface charge-dependent bioaccumulation dynamics of silver nanoparticles in freshwater algae.
    Zhang J; Xiang Q; Shen L; Ling J; Zhou C; Hu J; Chen L
    Chemosphere; 2020 May; 247():125936. PubMed ID: 31978664
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prediction of mammalian toxicity of organophosphorus pesticides from QSTR modeling.
    Devillers J
    SAR QSAR Environ Res; 2004; 15(5-6):501-10. PubMed ID: 15669705
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assessing the effects of the three herbicides acetochlor, 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) and 2,4-dichlorophenoxyacetic acid on the compound action potential of the sciatic nerve of the frog (Rana ridibunda).
    Zafeiridou G; Geronikaki A; Papaefthimiou C; Tryfonos M; Kosmidis EK; Theophilidis G
    Chemosphere; 2006 Nov; 65(6):1040-8. PubMed ID: 16674996
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.