These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 30969472)

  • 41. Toxicity of Nickel Oxide Nanoparticles on a Freshwater Green Algal Strain of
    Oukarroum A; Zaidi W; Samadani M; Dewez D
    Biomed Res Int; 2017; 2017():9528180. PubMed ID: 28473991
    [TBL] [Abstract][Full Text] [Related]  

  • 42. QSARINS-Chem standalone version: A new platform-independent software to profile chemicals for physico-chemical properties, fate, and toxicity.
    Chirico N; Sangion A; Gramatica P; Bertato L; Casartelli I; Papa E
    J Comput Chem; 2021 Jul; 42(20):1452-1460. PubMed ID: 33973667
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Toxic effects of boscalid in adult zebrafish (Danio rerio) on carbohydrate and lipid metabolism.
    Qian L; Zhang J; Chen X; Qi S; Wu P; Wang C; Wang C
    Environ Pollut; 2019 Apr; 247():775-782. PubMed ID: 30721868
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Chemical toxicity prediction for major classes of industrial chemicals: Is it possible to develop universal models covering cosmetics, drugs, and pesticides?
    Alves VM; Muratov EN; Zakharov A; Muratov NN; Andrade CH; Tropsha A
    Food Chem Toxicol; 2018 Feb; 112():526-534. PubMed ID: 28412406
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Exploring QSAR modeling of toxicity of chemicals on earthworm.
    Ghosh S; Ojha PK; Carnesecchi E; Lombardo A; Roy K; Benfenati E
    Ecotoxicol Environ Saf; 2020 Mar; 190():110067. PubMed ID: 31855788
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Differential sensitivity of two green algae, Scenedesmus quadricauda and Chlorella vulgaris, to 14 pesticide adjuvants.
    Ma J; Lin F; Zhang R; Yu W; Lu N
    Ecotoxicol Environ Saf; 2004 May; 58(1):61-7. PubMed ID: 15087164
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Impact of four pesticides on the growth and metabolic activities of two photosynthetic algae.
    Mostafa FI; Helling CS
    J Environ Sci Health B; 2002 Sep; 37(5):417-44. PubMed ID: 12369760
    [TBL] [Abstract][Full Text] [Related]  

  • 48. On the prediction of cytotoxicity of diverse chemicals for topminnow (Poeciliopsis lucida) hepatoma cell line, PLHC-1
    Kahraman EN; Saçan MT
    SAR QSAR Environ Res; 2018 Sep; 29(9):675-691. PubMed ID: 30220216
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A DFT-based QSAR study of the toxicity of quaternary ammonium compounds on Chlorella vulgaris.
    Zhu M; Ge F; Zhu R; Wang X; Zheng X
    Chemosphere; 2010 Jun; 80(1):46-52. PubMed ID: 20417544
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Differential sensitivity of two green algae, Scenedesmus obliqnus and Chlorella pyrenoidosa, to 12 pesticides.
    Ma J; Zheng R; Xu L; Wang S
    Ecotoxicol Environ Saf; 2002 May; 52(1):57-61. PubMed ID: 12051808
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Classification models for identifying substances exhibiting acute contact toxicity in honeybees (Apis mellifera)
    Venko K; Drgan V; Novič M
    SAR QSAR Environ Res; 2018 Sep; 29(9):743-754. PubMed ID: 30220217
    [TBL] [Abstract][Full Text] [Related]  

  • 52. How to accurately assay the algal toxicity of pesticides with low water solubility.
    Ma J; Chen J
    Environ Pollut; 2005 Jul; 136(2):267-73. PubMed ID: 15840534
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Volatilisation of pesticides under field conditions: inverse modelling and pesticide fate models.
    Houbraken M; van den Berg F; Butler Ellis CM; Dekeyser D; Nuyttens D; De Schampheleire M; Spanoghe P
    Pest Manag Sci; 2016 Jul; 72(7):1309-21. PubMed ID: 26374459
    [TBL] [Abstract][Full Text] [Related]  

  • 54. QSAR modeling in ecotoxicological risk assessment: application to the prediction of acute contact toxicity of pesticides on bees (Apis mellifera L.).
    Hamadache M; Benkortbi O; Hanini S; Amrane A
    Environ Sci Pollut Res Int; 2018 Jan; 25(1):896-907. PubMed ID: 29067614
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A new approach to QSAR modelling of acute toxicity.
    Lagunin AA; Zakharov AV; Filimonov DA; Poroikov VV
    SAR QSAR Environ Res; 2007; 18(3-4):285-98. PubMed ID: 17514571
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mechanism-based quantitative structure-activity relationships on toxicity of selected herbicides to Chlorella vulgaris and Raphidocelis subcapitata.
    Ding G; Li X; Zhang F; Chen J; Huang L; Qiao X
    Bull Environ Contam Toxicol; 2009 Oct; 83(4):520-4. PubMed ID: 19582361
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Greener chemicals for the future: QSAR modelling of the PBT index using ETA descriptors.
    De P; Roy K
    SAR QSAR Environ Res; 2018 Apr; 29(4):319-337. PubMed ID: 29457543
    [TBL] [Abstract][Full Text] [Related]  

  • 58. QSAR analysis of the toxicity of aromatic compounds to Chlorella vulgaris in a novel short-term assay.
    Netzeva TI; Dearden JC; Edwards R; Worgan AD; Cronin MT
    J Chem Inf Comput Sci; 2004; 44(1):258-65. PubMed ID: 14741035
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Enantioselectivity in toxicity and degradation of dichlorprop-methyl in algal cultures.
    Li H; Yuan Y; Shen C; Wen Y; Liu H
    J Environ Sci Health B; 2008 May; 43(4):288-92. PubMed ID: 18437615
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Assessment and modeling of the toxicity of organic chemicals to Chlorella vulgaris: development of a novel database.
    Cronin MT; Netzeva TI; Dearden JC; Edwards R; Worgan AD
    Chem Res Toxicol; 2004 Apr; 17(4):545-54. PubMed ID: 15089097
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.