These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 3096968)

  • 1. Heat shock proteins of vegetative and fruiting Myxococcus xanthus cells.
    Nelson DR; Killeen KP
    J Bacteriol; 1986 Dec; 168(3):1100-6. PubMed ID: 3096968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acceleration of starvation- and glycerol-induced myxospore formation by prior heat shock in Myxococcus xanthus.
    Killeen KP; Nelson DR
    J Bacteriol; 1988 Nov; 170(11):5200-7. PubMed ID: 3141380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Myxococcus xanthus protein C is a major spore surface protein.
    McCleary WR; Esmon B; Zusman DR
    J Bacteriol; 1991 Mar; 173(6):2141-5. PubMed ID: 1900510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SigB, SigC, and SigE from Myxococcus xanthus homologous to sigma32 are not required for heat shock response but for multicellular differentiation.
    Ueki T; Inouye S
    J Mol Microbiol Biotechnol; 2001 Apr; 3(2):287-93. PubMed ID: 11321585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorylation and methylation of proteins during Myxococcus xanthus spore formation.
    Komano T; Brown N; Inouye S; Inouye M
    J Bacteriol; 1982 Jul; 151(1):114-8. PubMed ID: 6806237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of a small heat shock protein, Mx Hsp16.6, of Myxococcus xanthus.
    Otani M; Ueki T; Kozuka S; Segawa M; Sano K; Inouye S
    J Bacteriol; 2005 Aug; 187(15):5236-41. PubMed ID: 16030217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transport and localization of protein S, a spore coat protein, during fruiting body formation by Myxococcus xanthus.
    Nelson DR; Zusman DR
    J Bacteriol; 1983 May; 154(2):547-53. PubMed ID: 6404884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localization of the stress protein SP21 in indole-induced spores, fruiting bodies, and heat-shocked cells of Stigmatella aurantiaca.
    Lünsdorf H; Schairer HU; Heidelbach M
    J Bacteriol; 1995 Dec; 177(24):7092-9. PubMed ID: 8522514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of major sporulation proteins of Myxococcus xanthus using a proteomic approach.
    Dahl JL; Tengra FK; Dutton D; Yan J; Andacht TM; Coyne L; Windell V; Garza AG
    J Bacteriol; 2007 Apr; 189(8):3187-97. PubMed ID: 17293425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of pre- and post-heat shock temperature on the persistence of thermotolerance and heat shock-induced proteins in Listeria monocytogenes.
    Jørgensen F; Panaretou B; Stephens PJ; Knøchel S
    J Appl Bacteriol; 1996 Feb; 80(2):216-24. PubMed ID: 8642016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative genomic analysis of fruiting body formation in Myxococcales.
    Huntley S; Hamann N; Wegener-Feldbrügge S; Treuner-Lange A; Kube M; Reinhardt R; Klages S; Müller R; Ronning CM; Nierman WC; Søgaard-Andersen L
    Mol Biol Evol; 2011 Feb; 28(2):1083-97. PubMed ID: 21037205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trehalose accumulation in vegetative cells and spores of Myxococcus xanthus.
    McBride MJ; Zusman DR
    J Bacteriol; 1989 Nov; 171(11):6383-6. PubMed ID: 2509436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphogenesis in Myxococcus xanthus and Myxococcus virescens Myxobacterales.
    Parish JH; Wedgwood KR; Herries DG
    Arch Microbiol; 1976 Apr; 107(3):343-51. PubMed ID: 58646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for long-lived mRNA during fruiting body formation in myxococcus xanthus.
    Nelson DR; Zusman DR
    Proc Natl Acad Sci U S A; 1983 Mar; 80(5):1467-71. PubMed ID: 6402782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heat shock applied early in sporulation affects heat resistance of Bacillus megaterium spores.
    Sedlák M; Vinter V; Adamec J; Vohradský J; Voburka Z; Chaloupka J
    J Bacteriol; 1993 Dec; 175(24):8049-52. PubMed ID: 7902834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heat-shock-induced proteins from Myxococcus xanthus.
    Otani M; Tabata J; Ueki T; Sano K; Inouye S
    J Bacteriol; 2001 Nov; 183(21):6282-7. PubMed ID: 11591671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Behavior of peripheral rods and their role in the life cycle of Myxococcus xanthus.
    O'Connor KA; Zusman DR
    J Bacteriol; 1991 Jun; 173(11):3342-55. PubMed ID: 1904432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Patterns of protein production in Myxococcus xanthus during spore formation induced by glycerol, dimethyl sulfoxide, and phenethyl alcohol.
    Komano T; Inouye S; Inouye M
    J Bacteriol; 1980 Dec; 144(3):1076-82. PubMed ID: 6160140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of several membrane proteins during developmental aggregation in Myxococcus xanthus.
    Orndorff PE; Dworkin M
    J Bacteriol; 1982 Jan; 149(1):29-39. PubMed ID: 6798022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heat shock and cold shock in Deinococcus radiodurans.
    Airo A; Chan SL; Martinez Z; Platt MO; Trent JD
    Cell Biochem Biophys; 2004; 40(3):277-88. PubMed ID: 15211028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.