These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 30969748)

  • 21. Decrypting the Controlled Product Selectivity over Ag-Cu Bimetallic Surface Alloys for Electrochemical CO
    Wei D; Wang Y; Dong CL; Zhang Z; Wang X; Huang YC; Shi Y; Zhao X; Wang J; Long R; Xiong Y; Dong F; Li M; Shen S
    Angew Chem Int Ed Engl; 2023 May; 62(19):e202217369. PubMed ID: 36916416
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Seeded Growth of Gold-Copper Janus Nanostructures as a Tandem Catalyst for Efficient Electroreduction of CO
    Zheng Y; Zhang J; Ma Z; Zhang G; Zhang H; Fu X; Ma Y; Liu F; Liu M; Huang H
    Small; 2022 May; 18(19):e2201695. PubMed ID: 35398985
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Co-sputter deposited nickel-copper bimetallic nanoalloy embedded carbon films for electrocatalytic biomarker detection.
    Shiba S; Kato D; Kamata T; Niwa O
    Nanoscale; 2016 Jul; 8(26):12887-91. PubMed ID: 27333270
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High Throughput Preparation of Ag-Zn Alloy Thin Films for the Electrocatalytic Reduction of CO
    Sun J; Yu B; Yan X; Wang J; Tan F; Yang W; Cheng G; Zhang Z
    Materials (Basel); 2022 Oct; 15(19):. PubMed ID: 36234233
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrochemical tuning of Pd
    Babu SP; Elumalai P
    Phys Chem Chem Phys; 2019 Apr; 21(16):8246-8256. PubMed ID: 30924480
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Theoretical insight into the electrocatalytic reduction of CO
    Xing M; Guo L; Hao Z
    Dalton Trans; 2019 Jan; 48(4):1504-1515. PubMed ID: 30632583
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Au/Pb Interface Allows the Methane Formation Pathway in Carbon Dioxide Electroreduction.
    Ismail AM; Samu GF; Nguyën HC; Csapó E; López N; Janáky C
    ACS Catal; 2020 May; 10(10):5681-5690. PubMed ID: 32455054
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrochemical CO
    Clark EL; Hahn C; Jaramillo TF; Bell AT
    J Am Chem Soc; 2017 Nov; 139(44):15848-15857. PubMed ID: 28988474
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tracking heterogeneous structural motifs and the redox behaviour of copper-zinc nanocatalysts for the electrocatalytic CO
    Rüscher M; Herzog A; Timoshenko J; Jeon HS; Frandsen W; Kühl S; Roldan Cuenya B
    Catal Sci Technol; 2022 May; 12(9):3028-3043. PubMed ID: 35662799
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Catalyst Control of Selectivity in CO2 Reduction Using a Tunable Heterobimetallic Effect.
    Bagherzadeh S; Mankad NP
    J Am Chem Soc; 2015 Sep; 137(34):10898-901. PubMed ID: 26293355
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fabrication of bimetallic Cu/Au nanotubes and their sensitive, selective, reproducible and reusable electrochemical sensing of glucose.
    Tee SY; Ye E; Pan PH; Lee CJ; Hui HK; Zhang SY; Koh LD; Dong Z; Han MY
    Nanoscale; 2015 Jul; 7(25):11190-8. PubMed ID: 26061696
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Influence of surface condition upon the cytotoxicity of copper-gold alloy (in vitro) (author's transl)].
    Kato J
    Shika Rikogaku Zasshi; 1976 May; 17(38):63-78. PubMed ID: 1066408
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Carbonized wood membrane decorated with AuPd alloy nanoparticles as an efficient self-supported electrode for electrocatalytic CO
    Wang F; Zhang H; Zhang Z; Ma Q; Kong C; Min S
    J Colloid Interface Sci; 2022 Feb; 607(Pt 1):312-322. PubMed ID: 34507001
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bifunctional Interface of Au and Cu for Improved CO2 Electroreduction.
    Back S; Kim JH; Kim YT; Jung Y
    ACS Appl Mater Interfaces; 2016 Sep; 8(35):23022-7. PubMed ID: 27526778
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Coupled Metal/Oxide Catalysts with Tunable Product Selectivity for Electrocatalytic CO
    Huo S; Weng Z; Wu Z; Zhong Y; Wu Y; Fang J; Wang H
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):28519-28526. PubMed ID: 28786653
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tuning the Kondo effect in thin Au films by depositing a thin layer of Au on molecular spin-dopants.
    Ataç D; Gang T; Yilmaz MD; Bose SK; Lenferink AT; Otto C; de Jong MP; Huskens J; van der Wiel WG
    Nanotechnology; 2013 Sep; 24(37):375204. PubMed ID: 23975183
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A highly selective copper-indium bimetallic electrocatalyst for the electrochemical reduction of aqueous CO2 to CO.
    Rasul S; Anjum DH; Jedidi A; Minenkov Y; Cavallo L; Takanabe K
    Angew Chem Int Ed Engl; 2015 Feb; 54(7):2146-50. PubMed ID: 25537315
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Isolated copper-tin atomic interfaces tuning electrocatalytic CO
    Ren W; Tan X; Qu J; Li S; Li J; Liu X; Ringer SP; Cairney JM; Wang K; Smith SC; Zhao C
    Nat Commun; 2021 Mar; 12(1):1449. PubMed ID: 33664236
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Morphological and Compositional Design of Pd-Cu Bimetallic Nanocatalysts with Controllable Product Selectivity toward CO
    Zhu W; Zhang L; Yang P; Chang X; Dong H; Li A; Hu C; Huang Z; Zhao ZJ; Gong J
    Small; 2018 Feb; 14(7):. PubMed ID: 29280288
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Copper⁻Silver Bimetallic Nanowire Arrays for Electrochemical Reduction of Carbon Dioxide.
    Wang Y; Niu C; Zhu Y
    Nanomaterials (Basel); 2019 Jan; 9(2):. PubMed ID: 30704109
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.