These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 30969898)

  • 1. Autonomous patch-clamp robot for functional characterization of neurons in vivo: development and application to mouse visual cortex.
    Holst GL; Stoy W; Yang B; Kolb I; Kodandaramaiah SB; Li L; Knoblich U; Zeng H; Haider B; Boyden ES; Forest CR
    J Neurophysiol; 2019 Jun; 121(6):2341-2357. PubMed ID: 30969898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated whole-cell patch-clamp electrophysiology of neurons in vivo.
    Kodandaramaiah SB; Franzesi GT; Chow BY; Boyden ES; Forest CR
    Nat Methods; 2012 Jun; 9(6):585-7. PubMed ID: 22561988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PatcherBot: a single-cell electrophysiology robot for adherent cells and brain slices.
    Kolb I; Landry CR; Yip MC; Lewallen CF; Stoy WA; Lee J; Felouzis A; Yang B; Boyden ES; Rozell CJ; Forest CR
    J Neural Eng; 2019 Aug; 16(4):046003. PubMed ID: 30970335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated in vivo patch-clamp evaluation of extracellular multielectrode array spike recording capability.
    Allen BD; Moore-Kochlacs C; Bernstein JG; Kinney JP; Scholvin J; Seoane LF; Chronopoulos C; Lamantia C; Kodandaramaiah SB; Tegmark M; Boyden ES
    J Neurophysiol; 2018 Nov; 120(5):2182-2200. PubMed ID: 29995597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robotic navigation to subcortical neural tissue for intracellular electrophysiology in vivo.
    Stoy WA; Kolb I; Holst GL; Liew Y; Pala A; Yang B; Boyden ES; Stanley GB; Forest CR
    J Neurophysiol; 2017 Aug; 118(2):1141-1150. PubMed ID: 28592685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integration of autopatching with automated pipette and cell detection in vitro.
    Wu 吴秋雨 Q; Kolb I; Callahan BM; Su Z; Stoy W; Kodandaramaiah SB; Neve R; Zeng H; Boyden ES; Forest CR; Chubykin AA
    J Neurophysiol; 2016 Oct; 116(4):1564-1578. PubMed ID: 27385800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robotic Automation of In Vivo Two-Photon Targeted Whole-Cell Patch-Clamp Electrophysiology.
    Annecchino LA; Morris AR; Copeland CS; Agabi OE; Chadderton P; Schultz SR
    Neuron; 2017 Aug; 95(5):1048-1055.e3. PubMed ID: 28858615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Culturing and electrophysiology of cells on NRCC patch-clamp chips.
    Py C; Martina M; Monette R; Comas T; Denhoff MW; Luk C; Syed NI; Mealing G
    J Vis Exp; 2012 Feb; (60):. PubMed ID: 22348948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compensation of physiological motion enables high-yield whole-cell recording in vivo.
    Stoy WM; Yang B; Kight A; Wright NC; Borden PY; Stanley GB; Forest CR
    J Neurosci Methods; 2021 Jan; 348():109008. PubMed ID: 33242530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Closed-Loop Real-Time Imaging Enables Fully Automated Cell-Targeted Patch-Clamp Neural Recording In Vivo.
    Suk HJ; van Welie I; Kodandaramaiah SB; Allen B; Forest CR; Boyden ES
    Neuron; 2017 Aug; 95(5):1037-1047.e11. PubMed ID: 28858614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-neuron intracellular recording in vivo via interacting autopatching robots.
    Kodandaramaiah SB; Flores FJ; Holst GL; Singer AC; Han X; Brown EN; Boyden ES; Forest CR
    Elife; 2018 Jan; 7():. PubMed ID: 29297466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine Learning-Based Pipette Positional Correction for Automatic Patch Clamp
    Gonzalez MM; Lewallen CF; Yip MC; Forest CR
    eNeuro; 2021; 8(4):. PubMed ID: 34312222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microchip amplifier for in vitro, in vivo, and automated whole cell patch-clamp recording.
    Harrison RR; Kolb I; Kodandaramaiah SB; Chubykin AA; Yang A; Bear MF; Boyden ES; Forest CR
    J Neurophysiol; 2015 Feb; 113(4):1275-82. PubMed ID: 25429119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MATLAB-based automated patch-clamp system for awake behaving mice.
    Desai NS; Siegel JJ; Taylor W; Chitwood RA; Johnston D
    J Neurophysiol; 2015 Aug; 114(2):1331-45. PubMed ID: 26084901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cleaning patch-clamp pipettes for immediate reuse.
    Kolb I; Stoy WA; Rousseau EB; Moody OA; Jenkins A; Forest CR
    Sci Rep; 2016 Oct; 6():35001. PubMed ID: 27725751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Loose-patch-juxtacellular recording in vivo--a method for functional characterization and labeling of neurons in macaque V1.
    Joshi S; Hawken MJ
    J Neurosci Methods; 2006 Sep; 156(1-2):37-49. PubMed ID: 16540174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of Automated Image-guided Patch Clamp for the Study of Neurons in Brain Slices.
    Wu Q; Chubykin AA
    J Vis Exp; 2017 Jul; (125):. PubMed ID: 28784955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrative analysis of in vivo recording with single-cell RNA-seq data reveals molecular properties of light-sensitive neurons in mouse V1.
    Liu J; Wang M; Sun L; Pan NC; Zhang C; Zhang J; Zuo Z; He S; Wu Q; Wang X
    Protein Cell; 2020 Jun; 11(6):417-432. PubMed ID: 32350740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuron Contact Detection Based on Pipette Precise Positioning for Robotic Brain-Slice Patch Clamps.
    Li K; Gong H; Qiu J; Li R; Zhao Q; Zhao X; Sun M
    Sensors (Basel); 2023 Sep; 23(19):. PubMed ID: 37836974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immediate reuse of patch-clamp pipettes after ultrasonic cleaning.
    Jehasse K; Jouhanneau JS; Wetz S; Schwedt A; Poulet JFA; Neumann-Raizel P; Kampa BM
    Sci Rep; 2024 Jan; 14(1):1660. PubMed ID: 38238544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.