These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 30970145)

  • 1. Reinforcement reduces the size-latency phenomenon: A cost-benefit evaluation of saccade triggering.
    Vullings C; Harwood MR; Madelain L
    J Vis; 2019 Apr; 19(4):16. PubMed ID: 30970145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of saccadic latency in a dynamic environment: allocation of saccades in time follows the matching law.
    Vullings C; Madelain L
    J Neurophysiol; 2018 Feb; 119(2):413-421. PubMed ID: 29118197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discriminative control of saccade latencies.
    Vullings C; Madelain L
    J Vis; 2019 Mar; 19(3):16. PubMed ID: 30924844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gap effects on saccade and vergence latency.
    Coubard O; Daunys G; Kapoula Z
    Exp Brain Res; 2004 Feb; 154(3):368-81. PubMed ID: 14557910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The saccadic size-latency phenomenon explored: Proximal target size is a determining factor in the saccade latency.
    De Vries JP; Azadi R; Harwood MR
    Vision Res; 2016 Dec; 129():87-97. PubMed ID: 27664350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The spatial scale of attention strongly modulates saccade latencies.
    Harwood MR; Madelain L; Krauzlis RJ; Wallman J
    J Neurophysiol; 2008 Apr; 99(4):1743-57. PubMed ID: 18234988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of saccadic eye movements by predicted reward outcome.
    Takikawa Y; Kawagoe R; Itoh H; Nakahara H; Hikosaka O
    Exp Brain Res; 2002 Jan; 142(2):284-91. PubMed ID: 11807582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Release of fixation for pursuit and saccades in humans: evidence for shared inputs acting on different neural substrates.
    Krauzlis RJ; Miles FA
    J Neurophysiol; 1996 Nov; 76(5):2822-33. PubMed ID: 8930235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The location marker effect. Saccadic latency increases with target eccentricity.
    Hodgson TL
    Exp Brain Res; 2002 Aug; 145(4):539-42. PubMed ID: 12172666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Saccadic reaction time in the monkey: advanced preparation of oculomotor programs is primarily responsible for express saccade occurrence.
    Paré M; Munoz DP
    J Neurophysiol; 1996 Dec; 76(6):3666-81. PubMed ID: 8985865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Central mesencephalic reticular formation (cMRF) neurons discharging before and during eye movements.
    Waitzman DM; Silakov VL; Cohen B
    J Neurophysiol; 1996 Apr; 75(4):1546-72. PubMed ID: 8727396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The eccentricity effect for auditory saccadic reaction times is independent of target frequency.
    Gabriel DN; Munoz DP; Boehnke SE
    Hear Res; 2010 Apr; 262(1-2):19-25. PubMed ID: 20138978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The initiation of smooth pursuit eye movements and saccades in normal subjects and in "express-saccade makers".
    Kimmig H; Biscaldi M; Mutter J; Doerr JP; Fischer B
    Exp Brain Res; 2002 Jun; 144(3):373-84. PubMed ID: 12021819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shortening and prolongation of saccade latencies following microsaccades.
    Rolfs M; Laubrock J; Kliegl R
    Exp Brain Res; 2006 Mar; 169(3):369-76. PubMed ID: 16328308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Short-latency allocentric control of saccadic eye movements.
    Chakrabarty M; Nakano T; Kitazawa S
    J Neurophysiol; 2017 Jan; 117(1):376-387. PubMed ID: 27784804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of saccade training on express saccade proportions, saccade latencies, and peak velocities: an investigation of nasal/temporal differences.
    Jóhannesson ÓI; Edelman JA; Sigurþórsson BD; Kristjánsson Á
    Exp Brain Res; 2018 May; 236(5):1251-1262. PubMed ID: 29480354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Remote distractor effects and saccadic inhibition: spatial and temporal modulation.
    Walker R; Benson V
    J Vis; 2013 Sep; 13(11):. PubMed ID: 24029821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The spatial impact of visual distractors on saccade latency.
    McSorley E; McCloy R; Lyne C
    Vision Res; 2012 May; 60():61-72. PubMed ID: 22469779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial deployment of attention influences both saccadic and pursuit tracking.
    Madelain L; Krauzlis RJ; Wallman J
    Vision Res; 2005 Sep; 45(20):2685-703. PubMed ID: 16005932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Secondary (micro-)saccades: the influence of primary saccade end point and target eccentricity on the process of postsaccadic fixation.
    Ohl S; Brandt SA; Kliegl R
    Vision Res; 2011 Dec; 51(23-24):2340-7. PubMed ID: 21945994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.