These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Chemical modification of bovine liver rhodanese with tetrathionate: differential effects on the sulfur-free and sulfur-containing catalytic intermediates. Prasad AR; Horowitz PM Biochim Biophys Acta; 1987 Jan; 911(1):102-8. PubMed ID: 3466649 [TBL] [Abstract][Full Text] [Related]
8. Reversible interconversion between sulfo and desulfo xanthine oxidase in a system containing rhodanese, thiosulfate, and sulfhydryl reagent. Nishino T; Usami C; Tsushima K Proc Natl Acad Sci U S A; 1983 Apr; 80(7):1826-9. PubMed ID: 6572944 [TBL] [Abstract][Full Text] [Related]
9. Interaction of rhodanese with mitochondrial NADH dehydrogenase. Pagani S; Galante YM Biochim Biophys Acta; 1983 Jan; 742(2):278-84. PubMed ID: 6402020 [TBL] [Abstract][Full Text] [Related]
10. Reducing sugars can induce the oxidative inactivation of rhodanese. Horowitz PM; Butler M; McClure GD J Biol Chem; 1992 Nov; 267(33):23596-600. PubMed ID: 1429701 [TBL] [Abstract][Full Text] [Related]
11. The inhibition of rhodanese by lipoate and iron-sulfur proteins. Pagani S; Bonomi F; Cerletti P Biochim Biophys Acta; 1983 Jan; 742(1):116-21. PubMed ID: 6402017 [TBL] [Abstract][Full Text] [Related]
12. Rhodanese-Mediated sulfur transfer to succinate dehydrogenase. Bonomi F; Pagani S; Cerletti P; Cannella C Eur J Biochem; 1977 Jan; 72(1):17-24. PubMed ID: 318999 [TBL] [Abstract][Full Text] [Related]
13. Properties of an Escherichia coli rhodanese. Alexander K; Volini M J Biol Chem; 1987 May; 262(14):6595-604. PubMed ID: 3553189 [TBL] [Abstract][Full Text] [Related]
14. Studies of the N-bromosuccinimide inactivation of the enzyme rhodanese. Guido K; Horowitz P Biochim Biophys Acta; 1977 Nov; 485(1):95-100. PubMed ID: 911868 [TBL] [Abstract][Full Text] [Related]
15. Active site cysteinyl and arginyl residues of rhodanese. A novel formation of disulfide bonds in the active site promoted by phenylglyoxal. Weng L; Heinrikson RL; Westley J J Biol Chem; 1978 Nov; 253(22):8109-19. PubMed ID: 711738 [TBL] [Abstract][Full Text] [Related]
16. The specificity of active-site alkylation by iodoacetic acid in the enzyme thiosulfate sulfurtransferase. Horowitz P; Criscimagna NL Biochim Biophys Acta; 1982 Apr; 702(2):173-7. PubMed ID: 6952939 [TBL] [Abstract][Full Text] [Related]
17. The use of intrinsic protein fluorescence to quantitate enzyme-bound persulfide and to measure equilibria between intermediates in rhodanese catalysis. Horowitz P; Criscimagna NL J Biol Chem; 1983 Jul; 258(13):7894-6. PubMed ID: 6575013 [TBL] [Abstract][Full Text] [Related]
18. Polymorphic Variants of Human Rhodanese Exhibit Differences in Thermal Stability and Sulfur Transfer Kinetics. Libiad M; Sriraman A; Banerjee R J Biol Chem; 2015 Sep; 290(39):23579-88. PubMed ID: 26269602 [TBL] [Abstract][Full Text] [Related]
19. Differential binding of the fluorescent probe 8-anilinonaphthalene-2-sulfonic acid to rhodanese catalytic intermediates. Horowitz PM; Criscimagna NL Biochemistry; 1985 May; 24(11):2587-93. PubMed ID: 3861197 [TBL] [Abstract][Full Text] [Related]
20. Oxidation increases the proteolytic susceptibility of a localized region in rhodanese. Horowitz PM; Bowman S J Biol Chem; 1987 Oct; 262(30):14544-8. PubMed ID: 3312191 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]