These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 30970261)

  • 1. Essential Gene Profiles for Human Pluripotent Stem Cells Identify Uncharacterized Genes and Substrate Dependencies.
    Mair B; Tomic J; Masud SN; Tonge P; Weiss A; Usaj M; Tong AHY; Kwan JJ; Brown KR; Titus E; Atkins M; Chan KSK; Munsie L; Habsid A; Han H; Kennedy M; Cohen B; Keller G; Moffat J
    Cell Rep; 2019 Apr; 27(2):599-615.e12. PubMed ID: 30970261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Method to Map Gene Essentiality of Human Pluripotent Stem Cells by Genome-Scale CRISPR Screens with Inducible Cas9.
    Mair B; Aregger M; Tong AHY; Chan KSK; Moffat J
    Methods Mol Biol; 2022; 2377():1-27. PubMed ID: 34709608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-Scale CRISPR Screens Identify Human Pluripotency-Specific Genes.
    Ihry RJ; Salick MR; Ho DJ; Sondey M; Kommineni S; Paula S; Raymond J; Henry B; Frias E; Wang Q; Worringer KA; Ye C; Russ C; Reece-Hoyes JS; Altshuler RC; Randhawa R; Yang Z; McAllister G; Hoffman GR; Dolmetsch R; Kaykas A
    Cell Rep; 2019 Apr; 27(2):616-630.e6. PubMed ID: 30970262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Defining essential genes for human pluripotent stem cells by CRISPR-Cas9 screening in haploid cells.
    Yilmaz A; Peretz M; Aharony A; Sagi I; Benvenisty N
    Nat Cell Biol; 2018 May; 20(5):610-619. PubMed ID: 29662178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TALEN- and CRISPR/Cas9-Mediated Gene Editing in Human Pluripotent Stem Cells Using Lipid-Based Transfection.
    Hendriks WT; Jiang X; Daheron L; Cowan CA
    Curr Protoc Stem Cell Biol; 2015 Aug; 34():5B.3.1-5B.3.25. PubMed ID: 26237572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An inducible CRISPR-ON system for controllable gene activation in human pluripotent stem cells.
    Guo J; Ma D; Huang R; Ming J; Ye M; Kee K; Xie Z; Na J
    Protein Cell; 2017 May; 8(5):379-393. PubMed ID: 28116670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of Differentiation Tendency Toward Hepatocytes from Gene Expression in Undifferentiated Human Pluripotent Stem Cells.
    Yanagihara K; Liu Y; Kanie K; Takayama K; Kokunugi M; Hirata M; Fukuda T; Suga M; Nikawa H; Mizuguchi H; Kato R; Furue MK
    Stem Cells Dev; 2016 Dec; 25(24):1884-1897. PubMed ID: 27733097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical Reversion of Conventional Human Pluripotent Stem Cells to a Naïve-like State with Improved Multilineage Differentiation Potency.
    Park TS; Zimmerlin L; Evans-Moses R; Zambidis ET
    J Vis Exp; 2018 Jun; (136):. PubMed ID: 29939183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-scale screens identify JNK-JUN signaling as a barrier for pluripotency exit and endoderm differentiation.
    Li QV; Dixon G; Verma N; Rosen BP; Gordillo M; Luo R; Xu C; Wang Q; Soh CL; Yang D; Crespo M; Shukla A; Xiang Q; Dündar F; Zumbo P; Witkin M; Koche R; Betel D; Chen S; Massagué J; Garippa R; Evans T; Beer MA; Huangfu D
    Nat Genet; 2019 Jun; 51(6):999-1010. PubMed ID: 31110351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide CRISPR-KO Screen Uncovers mTORC1-Mediated Gsk3 Regulation in Naive Pluripotency Maintenance and Dissolution.
    Li M; Yu JSL; Tilgner K; Ong SH; Koike-Yusa H; Yusa K
    Cell Rep; 2018 Jul; 24(2):489-502. PubMed ID: 29996108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-step generation of gene knockout-rescue system in pluripotent stem cells by promoter insertion with CRISPR/Cas9.
    Matsunaga T; Yamashita JK
    Biochem Biophys Res Commun; 2014 Feb; 444(2):158-63. PubMed ID: 24462858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Scaled Framework for CRISPR Editing of Human Pluripotent Stem Cells to Study Psychiatric Disease.
    Hazelbaker DZ; Beccard A; Bara AM; Dabkowski N; Messana A; Mazzucato P; Lam D; Manning D; Eggan K; Barrett LE
    Stem Cell Reports; 2017 Oct; 9(4):1315-1327. PubMed ID: 29020615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic comparison of CRISPR/Cas9 and RNAi screens for essential genes.
    Morgens DW; Deans RM; Li A; Bassik MC
    Nat Biotechnol; 2016 Jun; 34(6):634-6. PubMed ID: 27159373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Xeno- and feeder-free differentiation of human pluripotent stem cells to two distinct ocular epithelial cell types using simple modifications of one method.
    Hongisto H; Ilmarinen T; Vattulainen M; Mikhailova A; Skottman H
    Stem Cell Res Ther; 2017 Dec; 8(1):291. PubMed ID: 29284513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide CRISPR screen identifies ZIC2 as an essential gene that controls the cell fate of early mesodermal precursors to human heart progenitors.
    Xu J; Zhou C; Foo KS; Yang R; Xiao Y; Bylund K; Sahara M; Chien KR
    Stem Cells; 2020 Jun; 38(6):741-755. PubMed ID: 32129551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An iCRISPR platform for rapid, multiplexable, and inducible genome editing in human pluripotent stem cells.
    González F; Zhu Z; Shi ZD; Lelli K; Verma N; Li QV; Huangfu D
    Cell Stem Cell; 2014 Aug; 15(2):215-226. PubMed ID: 24931489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving single-cell cloning workflow for gene editing in human pluripotent stem cells.
    Chen YH; Pruett-Miller SM
    Stem Cell Res; 2018 Aug; 31():186-192. PubMed ID: 30099335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids.
    Freedman BS; Brooks CR; Lam AQ; Fu H; Morizane R; Agrawal V; Saad AF; Li MK; Hughes MR; Werff RV; Peters DT; Lu J; Baccei A; Siedlecki AM; Valerius MT; Musunuru K; McNagny KM; Steinman TI; Zhou J; Lerou PH; Bonventre JV
    Nat Commun; 2015 Oct; 6():8715. PubMed ID: 26493500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimized inducible shRNA and CRISPR/Cas9 platforms for in vitro studies of human development using hPSCs.
    Bertero A; Pawlowski M; Ortmann D; Snijders K; Yiangou L; Cardoso de Brito M; Brown S; Bernard WG; Cooper JD; Giacomelli E; Gambardella L; Hannan NR; Iyer D; Sampaziotis F; Serrano F; Zonneveld MC; Sinha S; Kotter M; Vallier L
    Development; 2016 Dec; 143(23):4405-4418. PubMed ID: 27899508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Establishment of Functional Genomics Pipeline in Mouse Epiblast-Like Tissue by Combining Transcriptomic Analysis and Gene Knockdown/Knockin/Knockout, Using RNA Interference and CRISPR/Cas9.
    Takata N; Sakakura E; Kasukawa T; Sakuma T; Yamamoto T; Sasai Y
    Hum Gene Ther; 2016 Jun; 27(6):436-50. PubMed ID: 26839115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.