These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
440 related articles for article (PubMed ID: 30970574)
21. Analysis of retrotransposon abundance, diversity and distribution in holocentric Eleocharis (Cyperaceae) genomes. de Souza TB; Chaluvadi SR; Johnen L; Marques A; González-Elizondo MS; Bennetzen JL; Vanzela ALL Ann Bot; 2018 Aug; 122(2):279-290. PubMed ID: 30084890 [TBL] [Abstract][Full Text] [Related]
22. Diversity, dynamics and effects of long terminal repeat retrotransposons in the model grass Brachypodium distachyon. Stritt C; Wyler M; Gimmi EL; Pippel M; Roulin AC New Phytol; 2020 Sep; 227(6):1736-1748. PubMed ID: 31677277 [TBL] [Abstract][Full Text] [Related]
23. Retrotranspositions in orthologous regions of closely related grass species. Du C; Swigonová Z; Messing J BMC Evol Biol; 2006 Aug; 6():62. PubMed ID: 16914031 [TBL] [Abstract][Full Text] [Related]
24. Identification and characterization of genome-wide long terminal repeat retrotransposons provide an insight into elucidating the trait evolution of five Rhododendron species. Wen S; Zhao H; Qiao G; Shen X Plant Biol (Stuttg); 2023 Aug; 25(5):813-828. PubMed ID: 37128942 [TBL] [Abstract][Full Text] [Related]
25. High nucleotide similarity of three Orozco-Arias S; Dupeyron M; Gutiérrez-Duque D; Tabares-Soto R; Guyot R Genome; 2023 Mar; 66(3):51-61. PubMed ID: 36623262 [TBL] [Abstract][Full Text] [Related]
26. Analysis of the repetitive component and retrotransposon population in the genome of a marine angiosperm, Posidonia oceanica (L.) Delile. Barghini E; Mascagni F; Natali L; Giordani T; Cavallini A Mar Genomics; 2015 Dec; 24 Pt 3():397-404. PubMed ID: 26472701 [TBL] [Abstract][Full Text] [Related]
27. Major repeat components covering one-third of the ginseng (Panax ginseng C.A. Meyer) genome and evidence for allotetraploidy. Choi HI; Waminal NE; Park HM; Kim NH; Choi BS; Park M; Choi D; Lim YP; Kwon SJ; Park BS; Kim HH; Yang TJ Plant J; 2014 Mar; 77(6):906-16. PubMed ID: 24456463 [TBL] [Abstract][Full Text] [Related]
28. LTR retrotransposon dynamics in the evolution of the olive (Olea europaea) genome. Barghini E; Natali L; Giordani T; Cossu RM; Scalabrin S; Cattonaro F; Šimková H; Vrána J; Doležel J; Morgante M; Cavallini A DNA Res; 2015 Feb; 22(1):91-100. PubMed ID: 25428895 [TBL] [Abstract][Full Text] [Related]
29. Analysis of plant LTR-retrotransposons at the fine-scale family level reveals individual molecular patterns. Domingues DS; Cruz GM; Metcalfe CJ; Nogueira FT; Vicentini R; Alves Cde S; Van Sluys MA BMC Genomics; 2012 Apr; 13():137. PubMed ID: 22507400 [TBL] [Abstract][Full Text] [Related]
31. Isolation and characterization of reverse transcriptase fragments of LTR retrotransposons from the genome of Chenopodium quinoa (Amaranthaceae). Kolano B; Bednara E; Weiss-Schneeweiss H Plant Cell Rep; 2013 Oct; 32(10):1575-88. PubMed ID: 23754338 [TBL] [Abstract][Full Text] [Related]
32. Drosophila euchromatic LTR retrotransposons are much younger than the host species in which they reside. Bowen NJ; McDonald JF Genome Res; 2001 Sep; 11(9):1527-40. PubMed ID: 11544196 [TBL] [Abstract][Full Text] [Related]
33. Phylogenetic determination of the pace of transposable element proliferation in plants: copia and LINE-like elements in Gossypium. Hawkins JS; Hu G; Rapp RA; Grafenberg JL; Wendel JF Genome; 2008 Jan; 51(1):11-8. PubMed ID: 18356935 [TBL] [Abstract][Full Text] [Related]
34. Transposable element discovery and characterization of LTR-retrotransposon evolutionary lineages in the tropical fruit species Passiflora edulis. da Costa ZP; Cauz-Santos LA; Ragagnin GT; Van Sluys MA; Dornelas MC; Berges H; de Mello Varani A; Vieira MLC Mol Biol Rep; 2019 Dec; 46(6):6117-6133. PubMed ID: 31549373 [TBL] [Abstract][Full Text] [Related]
35. Genomic evolution of the long terminal repeat retrotransposons in hemiascomycetous yeasts. Neuvéglise C; Feldmann H; Bon E; Gaillardin C; Casaregola S Genome Res; 2002 Jun; 12(6):930-43. PubMed ID: 12045146 [TBL] [Abstract][Full Text] [Related]
36. Genome Size Evolution Mediated by Gypsy Retrotransposons in Brassicaceae. Zhang SJ; Liu L; Yang R; Wang X Genomics Proteomics Bioinformatics; 2020 Jun; 18(3):321-332. PubMed ID: 33137519 [TBL] [Abstract][Full Text] [Related]
37. Comprehensive analysis of the Xya riparia genome uncovers the dominance of DNA transposons, LTR/Gypsy elements, and their evolutionary dynamics. Khan H; Yuan H; Liu X; Nie Y; Majid M BMC Genomics; 2024 Jul; 25(1):687. PubMed ID: 38997681 [TBL] [Abstract][Full Text] [Related]
38. Full-length LTR retroelements in Capsicum annuum revealed a few species-specific family bursts with insertional preferences. Yañez-Santos AM; Paz RC; Paz-Sepúlveda PB; Urdampilleta JD Chromosome Res; 2021 Dec; 29(3-4):261-284. PubMed ID: 34086192 [TBL] [Abstract][Full Text] [Related]
39. Genome wide annotation and characterization of young, intact long terminal repeat retrotransposons (In-LTR-RTs) of seven legume species. Jayaswal PK; Shanker A; Singh NK Genetica; 2020 Dec; 148(5-6):253-268. PubMed ID: 32949338 [TBL] [Abstract][Full Text] [Related]
40. BEL/Pao retrotransposons in metazoan genomes. de la Chaux N; Wagner A BMC Evol Biol; 2011 Jun; 11():154. PubMed ID: 21639932 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]