These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 30970661)
21. Combined small RNA and gene expression analysis revealed roles of miRNAs in maize response to rice black-streaked dwarf virus infection. Li A; Li G; Zhao Y; Meng Z; Zhao M; Li C; Zhang Y; Li P; Ma CL; Xia H; Zhao S; Hou L; Zhao C; Wang X Sci Rep; 2018 Sep; 8(1):13502. PubMed ID: 30201997 [TBL] [Abstract][Full Text] [Related]
22. Differential expression of miRNAs in response to salt stress in maize roots. Ding D; Zhang L; Wang H; Liu Z; Zhang Z; Zheng Y Ann Bot; 2009 Jan; 103(1):29-38. PubMed ID: 18952624 [TBL] [Abstract][Full Text] [Related]
23. Integrated Analysis of Small RNA, Transcriptome, and Degradome Sequencing Reveals the Water-Deficit and Heat Stress Response Network in Durum Wheat. Liu H; Able AJ; Able JA Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32825615 [TBL] [Abstract][Full Text] [Related]
24. System Analysis of Peng C; Wang X; Feng T; He R; Zhang M; Li Z; Zhou Y; Duan L Biomolecules; 2019 Aug; 9(9):. PubMed ID: 31461907 [TBL] [Abstract][Full Text] [Related]
25. Computational identification of maize miRNA and their gene targets involved in biotic and abiotic stresses. Kaur K; Duhan N; Singh J; Kaur G; Vikal Y J Biosci; 2020; 45():. PubMed ID: 33184248 [TBL] [Abstract][Full Text] [Related]
26. Identification and expression profiles of putative leaf growth related microRNAs in maize (Zea mays L.) hybrid ADA313. Aydinoglu F; Lucas SJ Gene; 2019 Mar; 690():57-67. PubMed ID: 30597233 [TBL] [Abstract][Full Text] [Related]
27. Identification of miRNAs and their targets in maize in response to Sugarcane mosaic virus infection. Xia Z; Zhao Z; Li M; Chen L; Jiao Z; Wu Y; Zhou T; Yu W; Fan Z Plant Physiol Biochem; 2018 Apr; 125():143-152. PubMed ID: 29453091 [TBL] [Abstract][Full Text] [Related]
28. Genome-wide expression profiling of microRNAs in poplar upon infection with the foliar rust fungus Melampsora larici-populina. Chen M; Cao Z BMC Genomics; 2015 Sep; 16(1):696. PubMed ID: 26370267 [TBL] [Abstract][Full Text] [Related]
29. Integrated transcriptome, small RNA, and degradome analysis reveals the complex network regulating starch biosynthesis in maize. Zhang X; Xie S; Han J; Zhou Y; Liu C; Zhou Z; Wang F; Cheng Z; Zhang J; Hu Y; Hao Z; Li M; Zhang D; Yong H; Huang Y; Weng J; Li X BMC Genomics; 2019 Jul; 20(1):574. PubMed ID: 31296166 [TBL] [Abstract][Full Text] [Related]
30. Dehydration-responsive miRNAs in foxtail millet: genome-wide identification, characterization and expression profiling. Yadav A; Khan Y; Prasad M Planta; 2016 Mar; 243(3):749-66. PubMed ID: 26676987 [TBL] [Abstract][Full Text] [Related]
31. Comparative miRNAs analysis of Two contrasting broccoli inbred lines with divergent head-forming capacity under temperature stress. Chen CC; Fu SF; Norikazu M; Yang YW; Liu YJ; Ikeo K; Gojobori T; Huang HJ BMC Genomics; 2015 Dec; 16():1026. PubMed ID: 26625945 [TBL] [Abstract][Full Text] [Related]
32. Inferring the regulatory network of the miRNA-mediated response to biotic and abiotic stress in melon. Sanz-Carbonell A; Marques MC; Bustamante A; Fares MA; Rodrigo G; Gomez G BMC Plant Biol; 2019 Feb; 19(1):78. PubMed ID: 30777009 [TBL] [Abstract][Full Text] [Related]
33. Discovery of precursor and mature microRNAs and their putative gene targets using high-throughput sequencing in pineapple (Ananas comosus var. comosus). Yusuf NH; Ong WD; Redwan RM; Latip MA; Kumar SV Gene; 2015 Oct; 571(1):71-80. PubMed ID: 26115767 [TBL] [Abstract][Full Text] [Related]
34. Identification of miRNAs Mediating Seed Storability of Maize during Germination Stage by High-Throughput Sequencing, Transcriptome and Degradome Sequencing. Song Y; Lv Z; Wang Y; Li C; Jia Y; Zhu Y; Cao M; Zhou Y; Zeng X; Wang Z; Zhang L; Di H Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293196 [TBL] [Abstract][Full Text] [Related]
35. Genome-Wide Identification of miRNAs and Their Targets Involved in the Developing Internodes under Maize Ears by Responding to Hormone Signaling. Zhao Z; Xue Y; Yang H; Li H; Sun G; Zhao X; Ding D; Tang J PLoS One; 2016; 11(10):e0164026. PubMed ID: 27695059 [TBL] [Abstract][Full Text] [Related]
36. Identification and characterization of microRNAs in the liver of rainbow trout in response to heat stress by high-throughput sequencing. Huang J; Li Y; Ma F; Kang Y; Liu Z; Wang J Gene; 2018 Dec; 679():274-281. PubMed ID: 30205173 [TBL] [Abstract][Full Text] [Related]
37. Combined small RNA and degradome sequencing reveals novel miRNAs and their targets in response to low nitrate availability in maize. Zhao Y; Xu Z; Mo Q; Zou C; Li W; Xu Y; Xie C Ann Bot; 2013 Aug; 112(3):633-42. PubMed ID: 23788746 [TBL] [Abstract][Full Text] [Related]
38. High-throughput sequencing and degradome analysis reveal neutral evolution of Cercis gigantea microRNAs and their targets. Guo W; Zhang Y; Wang Q; Zhan Y; Zhu G; Yu Q; Zhu L Planta; 2016 Jan; 243(1):83-95. PubMed ID: 26342708 [TBL] [Abstract][Full Text] [Related]
39. Transcriptome-Wide Identification of miRNA Targets under Nitrogen Deficiency in Populus tomentosa Using Degradome Sequencing. Chen M; Bao H; Wu Q; Wang Y Int J Mol Sci; 2015 Jun; 16(6):13937-58. PubMed ID: 26096002 [TBL] [Abstract][Full Text] [Related]
40. High-throughput deep sequencing shows that microRNAs play important roles in switchgrass responses to drought and salinity stress. Xie F; Stewart CN; Taki FA; He Q; Liu H; Zhang B Plant Biotechnol J; 2014 Apr; 12(3):354-66. PubMed ID: 24283289 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]