BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 30970717)

  • 1. Bulk Heterojunction Solar Cells Based on Blends of Conjugated Polymers with II⁻VI and IV⁻VI Inorganic Semiconductor Quantum Dots.
    Kisslinger R; Hua W; Shankar K
    Polymers (Basel); 2017 Jan; 9(2):. PubMed ID: 30970717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flexible and efficient perovskite quantum dot solar cells via hybrid interfacial architecture.
    Hu L; Zhao Q; Huang S; Zheng J; Guan X; Patterson R; Kim J; Shi L; Lin CH; Lei Q; Chu D; Tao W; Cheong S; Tilley RD; Ho-Baillie AWY; Luther JM; Yuan J; Wu T
    Nat Commun; 2021 Jan; 12(1):466. PubMed ID: 33473106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Broadband absorbing bulk heterojunction photovoltaics using low-bandgap solution-processed quantum dots.
    Noone KM; Strein E; Anderson NC; Wu PT; Jenekhe SA; Ginger DS
    Nano Lett; 2010 Jul; 10(7):2635-9. PubMed ID: 20586432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interfacial and Bulk Nanostructures Control Loss of Charges in Organic Solar Cells.
    Naveed HB; Zhou K; Ma W
    Acc Chem Res; 2019 Oct; 52(10):2904-2915. PubMed ID: 31577121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hole Transfer from Low Band Gap Quantum Dots to Conjugated Polymers in Organic/Inorganic Hybrid Photovoltaics.
    Colbert AE; Janke EM; Hsieh ST; Subramaniyan S; Schlenker CW; Jenekhe SA; Ginger DS
    J Phys Chem Lett; 2013 Jan; 4(2):280-4. PubMed ID: 26283435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diketopyrrolopyrrole Polymers for Organic Solar Cells.
    Li W; Hendriks KH; Wienk MM; Janssen RA
    Acc Chem Res; 2016 Jan; 49(1):78-85. PubMed ID: 26693798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical Study of the Charge Transfer Exciton Binding Energy in Semiconductor Materials for Polymer:Fullerene-Based Bulk Heterojunction Solar Cells.
    Izquierdo MA; Broer R; Havenith RWA
    J Phys Chem A; 2019 Feb; 123(6):1233-1242. PubMed ID: 30676720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Mini Review on the Development of Conjugated Polymers: Steps towards the Commercialization of Organic Solar Cells.
    Al-Azzawi AGS; Aziz SB; Dannoun EMA; Iraqi A; Nofal MM; Murad AR; M Hussein A
    Polymers (Basel); 2022 Dec; 15(1):. PubMed ID: 36616512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mixed-quantum-dot solar cells.
    Yang Z; Fan JZ; Proppe AH; Arquer FPG; Rossouw D; Voznyy O; Lan X; Liu M; Walters G; Quintero-Bermudez R; Sun B; Hoogland S; Botton GA; Kelley SO; Sargent EH
    Nat Commun; 2017 Nov; 8(1):1325. PubMed ID: 29109416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new class of semiconducting polymers for bulk heterojunction solar cells with exceptionally high performance.
    Liang Y; Yu L
    Acc Chem Res; 2010 Sep; 43(9):1227-36. PubMed ID: 20853907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crafting semiconductor organic-inorganic nanocomposites via placing conjugated polymers in intimate contact with nanocrystals for hybrid solar cells.
    Zhao L; Lin Z
    Adv Mater; 2012 Aug; 24(32):4353-68. PubMed ID: 22761026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward High-Performance Organic-Inorganic Hybrid Solar Cells: Bringing Conjugated Polymers and Inorganic Nanocrystals in Close Contact.
    He M; Qiu F; Lin Z
    J Phys Chem Lett; 2013 Jun; 4(11):1788-96. PubMed ID: 26283110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymer Acceptors Containing B←N Units for Organic Photovoltaics.
    Zhao R; Liu J; Wang L
    Acc Chem Res; 2020 Aug; 53(8):1557-1567. PubMed ID: 32692535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amorphous Ternary Charge-Cascade Molecules for Bulk Heterojunction Photovoltaics.
    Jeanbourquin XA; Rahmanudin A; Yu X; Johnson M; Guijarro N; Yao L; Sivula K
    ACS Appl Mater Interfaces; 2017 Aug; 9(33):27825-27831. PubMed ID: 28796490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards high efficiency air-processed near-infrared responsive photovoltaics: bulk heterojunction solar cells based on PbS/CdS core-shell quantum dots and TiO2 nanorod arrays.
    Gonfa BA; Kim MR; Delegan N; Tavares AC; Izquierdo R; Wu N; El Khakani MA; Ma D
    Nanoscale; 2015 Jun; 7(22):10039-49. PubMed ID: 25975363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid morphology dependence of CdTe:CdSe bulk-heterojunction solar cells.
    Tan F; Qu S; Zhang W; Wang Z
    Nanoscale Res Lett; 2014; 9(1):593. PubMed ID: 25386107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanotetrapods: quantum dot hybrid for bulk heterojunction solar cells.
    Tan F; Qu S; Li F; Jiang Q; Chen C; Zhang W; Wang Z
    Nanoscale Res Lett; 2013 Oct; 8(1):434. PubMed ID: 24139059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterojunction Area-Controlled Inorganic Nanocrystal Solar Cells Fabricated Using Supra-Quantum Dots.
    Park J; Hwang S; Jeong S; Kim S; Bang J; Cho S
    ACS Appl Mater Interfaces; 2018 Dec; 10(50):43768-43773. PubMed ID: 30411612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inorganic-organic hybrid solar cell: bridging quantum dots to conjugated polymer nanowires.
    Ren S; Chang LY; Lim SK; Zhao J; Smith M; Zhao N; Bulović V; Bawendi M; Gradecak S
    Nano Lett; 2011 Sep; 11(9):3998-4002. PubMed ID: 21859097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Aggregation-Suppressed Polymer Blending Strategy Enables High-Performance Organic and Quantum Dot Hybrid Solar Cells.
    Liu J; Qiao J; Zhou K; Wang J; Gui R; Xian K; Gao M; Yin H; Hao X; Zhou Z; Ye L
    Small; 2022 May; 18(19):e2201387. PubMed ID: 35417057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.