BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 30970717)

  • 21. An Aggregation-Suppressed Polymer Blending Strategy Enables High-Performance Organic and Quantum Dot Hybrid Solar Cells.
    Liu J; Qiao J; Zhou K; Wang J; Gui R; Xian K; Gao M; Yin H; Hao X; Zhou Z; Ye L
    Small; 2022 May; 18(19):e2201387. PubMed ID: 35417057
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Depleted-heterojunction colloidal quantum dot solar cells.
    Pattantyus-Abraham AG; Kramer IJ; Barkhouse AR; Wang X; Konstantatos G; Debnath R; Levina L; Raabe I; Nazeeruddin MK; Grätzel M; Sargent EH
    ACS Nano; 2010 Jun; 4(6):3374-80. PubMed ID: 20496882
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Semiconductor Nanocrystals as Light Harvesters in Solar Cells.
    Etgar L
    Materials (Basel); 2013 Feb; 6(2):445-459. PubMed ID: 28809318
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Morphology Control of Monomer-Polymer Hybrid Electron Acceptor for Bulk-Heterojunction Solar Cell Based on P3HT and Ti-Alkoxide with Ladder Polymer.
    Ueda Y; Kurokawa Y; Nishii K; Kanematsu H; Fukumoto T; Kato T
    Materials (Basel); 2022 Feb; 15(3):. PubMed ID: 35161139
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Bulk Heterojunction in Organic Photovoltaic, Photodetector, and Photocatalytic Applications.
    Wadsworth A; Hamid Z; Kosco J; Gasparini N; McCulloch I
    Adv Mater; 2020 Sep; 32(38):e2001763. PubMed ID: 32754970
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Third generation photovoltaics based on multiple exciton generation in quantum confined semiconductors.
    Beard MC; Luther JM; Semonin OE; Nozik AJ
    Acc Chem Res; 2013 Jun; 46(6):1252-60. PubMed ID: 23113604
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular bulk heterojunctions: an emerging approach to organic solar cells.
    Roncali J
    Acc Chem Res; 2009 Nov; 42(11):1719-30. PubMed ID: 19580313
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Organometallic photovoltaics: a new and versatile approach for harvesting solar energy using conjugated polymetallaynes.
    Wong WY; Ho CL
    Acc Chem Res; 2010 Sep; 43(9):1246-56. PubMed ID: 20608673
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-performance solution-based CdS-conjugated hybrid polymer solar cells.
    Imran M; Ikram M; Shahzadi A; Dilpazir S; Khan H; Shahzadi I; Yousaf SA; Ali S; Geng J; Huang Y
    RSC Adv; 2018 May; 8(32):18051-18058. PubMed ID: 35542089
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Efficient and Stable Large-Area Perovskite Solar Cells with Inorganic Perovskite/Carbon Quantum Dot-Graded Heterojunction.
    Sun Q; Shen C; Wang D; Zhang T; Ban H; Shen Y; Zhang Z; Zhang XL; Yang G; Wang M
    Research (Wash D C); 2021; 2021():9845067. PubMed ID: 34355192
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced Photovoltaic Properties of Bulk Heterojunction Organic Photovoltaic Devices by an Addition of a Low Band Gap Conjugated Polymer.
    Lee EJ; Choi MH; Moon DK
    Materials (Basel); 2016 Dec; 9(12):. PubMed ID: 28774116
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hybrid solar cells with prescribed nanoscale morphologies based on hyperbranched semiconductor nanocrystals.
    Gur I; Fromer NA; Chen CP; Kanaras AG; Alivisatos AP
    Nano Lett; 2007 Feb; 7(2):409-14. PubMed ID: 17298008
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption.
    Li Y
    Acc Chem Res; 2012 May; 45(5):723-33. PubMed ID: 22288572
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recent developments of hybrid nanocrystal/polymer bulk heterojunction solar cells.
    Tang A; Qu S; Teng F; Hou Y; Wang Y; Wang Z
    J Nanosci Nanotechnol; 2011 Nov; 11(11):9384-94. PubMed ID: 22413218
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Conjugated polymers/semiconductor nanocrystals hybrid materials--preparation, electrical transport properties and applications.
    Reiss P; Couderc E; De Girolamo J; Pron A
    Nanoscale; 2011 Feb; 3(2):446-89. PubMed ID: 21152569
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recent Advances in Mechanically Robust and Stretchable Bulk Heterojunction Polymer Solar Cells.
    St Onge PBJ; Ocheje MU; Selivanova M; Rondeau-Gagné S
    Chem Rec; 2019 Jun; 19(6):1008-1027. PubMed ID: 30511820
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design of Donor Polymers with Strong Temperature-Dependent Aggregation Property for Efficient Organic Photovoltaics.
    Hu H; Chow PCY; Zhang G; Ma T; Liu J; Yang G; Yan H
    Acc Chem Res; 2017 Oct; 50(10):2519-2528. PubMed ID: 28915001
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Solution-processed small-molecule solar cells with 6.7% efficiency.
    Sun Y; Welch GC; Leong WL; Takacs CJ; Bazan GC; Heeger AJ
    Nat Mater; 2011 Nov; 11(1):44-8. PubMed ID: 22057387
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Strategies for increasing the efficiency of heterojunction organic solar cells: material selection and device architecture.
    Heremans P; Cheyns D; Rand BP
    Acc Chem Res; 2009 Nov; 42(11):1740-7. PubMed ID: 19751055
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interfacial Engineering for Quantum-Dot-Sensitized Solar Cells.
    Shen C; Fichou D; Wang Q
    Chem Asian J; 2016 Apr; 11(8):1183-93. PubMed ID: 26879244
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.