These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 30970919)

  • 1. Direct Micromachining of Microfluidic Channels on Biodegradable Materials Using Laser Ablation.
    Hsieh YK; Chen SC; Huang WL; Hsu KP; Gorday KAV; Wang T; Wang J
    Polymers (Basel); 2017 Jun; 9(7):. PubMed ID: 30970919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laser-pattern induced contact guidance in biodegradable microfluidic channels for vasculature regeneration.
    Hsieh YK; Hsu KP; Hsiao SK; Gorday KAV; Wang T; Wang J
    J Mater Chem B; 2018 Jun; 6(22):3684-3691. PubMed ID: 32254831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental Analysis of Laser Micromachining of Microchannels in Common Microfluidic Substrates.
    Konari PR; Clayton YD; Vaughan MB; Khandaker M; Hossan MR
    Micromachines (Basel); 2021 Jan; 12(2):. PubMed ID: 33525394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradable Polymeric Membranes for Organic Solvent/Water Pervaporation Applications.
    Chang PY; Wang J; Li SY; Suen SY
    Membranes (Basel); 2021 Dec; 11(12):. PubMed ID: 34940471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfabrication with Very Low-Average Power of Green Light to Produce PDMS Microchips.
    Hernandez-Cedillo LM; Vázquez-Cuevas FG; Quintero-Torres R; Aragón JL; Ocampo Mortera MA; Ordóñez-Romero CL; Domínguez-Juárez JL
    Polymers (Basel); 2021 Feb; 13(4):. PubMed ID: 33670467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication Methods for Microfluidic Devices: An Overview.
    Scott SM; Ali Z
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33803689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Process Parameters and Material Properties on Laser Micromachining of Microchannels.
    Benton M; Hossan MR; Konari PR; Gamagedara S
    Micromachines (Basel); 2019 Feb; 10(2):. PubMed ID: 30769833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cost-effective microfabrication of sub-micron-depth channels by femto-laser anti-stiction texturing.
    Karimi S; Mehrdel P; Casals-Terré J; Farré-Llados J
    Biofabrication; 2020 Feb; 12(2):025021. PubMed ID: 31891916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid fabrication of poly(dimethylsiloxane)-based microchip capillary electrophoresis devices using CO2 laser ablation.
    Fogarty BA; Heppert KE; Cory TJ; Hulbutta KR; Martin RS; Lunte SM
    Analyst; 2005 Jun; 130(6):924-30. PubMed ID: 15912242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective laser ablation for
    Sumantakul S; Remcho VT
    Lab Chip; 2023 Jul; 23(14):3194-3206. PubMed ID: 37222391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CO
    Yao Y; Fan Y
    Biomed Microdevices; 2021 Sep; 23(4):47. PubMed ID: 34550472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stainless steel pinholes for fast fabrication of high-performance microchip electrophoresis devices by CO2 laser ablation.
    Yap YC; Guijt RM; Dickson TC; King AE; Breadmore MC
    Anal Chem; 2013 Nov; 85(21):10051-6. PubMed ID: 24063252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic Channels Fabrication Based on Underwater Superpolymphobic Microgrooves Produced by Femtosecond Laser Direct Writing.
    Yong J; Zhan Z; Singh SC; Chen F; Guo C
    ACS Appl Polym Mater; 2019; 1(11):2819-2825. PubMed ID: 33283193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CO(2)-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems.
    Klank H; Kutter JP; Geschke O
    Lab Chip; 2002 Nov; 2(4):242-6. PubMed ID: 15100818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of polymer microfluidic systems by hot embossing and laser ablation.
    Locascio LE; Ross DJ; Howell PB; Gaitan M
    Methods Mol Biol; 2006; 339():37-46. PubMed ID: 16790865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication and characterization of biodegradable polymeric films as a corneal stroma substitute.
    Salehi S; Fathi M; Javanmard SH; Barneh F; Moshayedi M
    Adv Biomed Res; 2015; 4():9. PubMed ID: 25625115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiscale topological guidance for cell alignment via direct laser writing on biodegradable polymer.
    Yeong WY; Yu H; Lim KP; Ng KL; Boey YC; Subbu VS; Tan LP
    Tissue Eng Part C Methods; 2010 Oct; 16(5):1011-21. PubMed ID: 20050808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design, fabrication and characterization of monolithic embedded parylene microchannels in silicon substrate.
    Chen PJ; Shih CY; Tai YC
    Lab Chip; 2006 Jun; 6(6):803-10. PubMed ID: 16738734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional large-scale microfluidic integration by laser ablation of interlayer connections.
    Huft J; Da Costa DJ; Walker D; Hansen CL
    Lab Chip; 2010 Sep; 10(18):2358-65. PubMed ID: 20539896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poly (glycerol sebacate) elastomer supports bone regeneration by its mechanical properties being closer to osteoid tissue rather than to mature bone.
    Zaky SH; Lee KW; Gao J; Jensen A; Verdelis K; Wang Y; Almarza AJ; Sfeir C
    Acta Biomater; 2017 May; 54():95-106. PubMed ID: 28110067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.