These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 30970965)

  • 41. Polydopamine coated shape memory polymer: enabling light triggered shape recovery, light controlled shape reprogramming and surface functionalization.
    Li Z; Zhang X; Wang S; Yang Y; Qin B; Wang K; Xie T; Wei Y; Ji Y
    Chem Sci; 2016 Jul; 7(7):4741-4747. PubMed ID: 30155125
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Influence of Cross-Linking and Crystalline Morphology on the Shape-Memory Properties of PET/PEN/PCL Copolyesters Using Trimesic Acid and Glycerol.
    Yang FT; Chen YM; Rwei SP
    Polymers (Basel); 2023 Apr; 15(9):. PubMed ID: 37177229
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Preparation, Characterization, and Mechanism for Biodegradable and Biocompatible Polyurethane Shape Memory Elastomers.
    Chien YC; Chuang WT; Jeng US; Hsu SH
    ACS Appl Mater Interfaces; 2017 Feb; 9(6):5419-5429. PubMed ID: 28165708
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Triple Stimuli-Responsive Flexible Shape Memory Foams with Super-Amphiphilicity.
    Ding X; Shi Y; Xu S; Zhang Y; Du J; Qiu J
    Small; 2023 Feb; 19(6):e2205797. PubMed ID: 36461700
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Double Crystalline Multiblock Copolymers with Controlling Microstructure for High Shape Memory Fixity and Recovery.
    Huang M; Zheng L; Wang L; Dong X; Gao X; Li C; Wang D
    ACS Appl Mater Interfaces; 2017 Sep; 9(35):30046-30055. PubMed ID: 28805064
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Epoxy/Polycaprolactone Systems with Triple-Shape Memory Effect: Electrospun Nanoweb with and without Graphene
    Fejős M; Molnár K; Karger-Kocsis J
    Materials (Basel); 2013 Oct; 6(10):4489-4504. PubMed ID: 28788342
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Biocompound-Based Multiple Shape Memory Polymers Reinforced by Photo-Cross-Linking.
    Wang K; Jia YG; Zhu XX
    ACS Biomater Sci Eng; 2015 Sep; 1(9):855-863. PubMed ID: 33434964
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Synthesis and characterization of shape-memory poly carbonate urethane microspheres for future vascular embolization.
    Liu R; Dai H; Zhou Q; Zhang Q; Zhang P
    J Biomater Sci Polym Ed; 2016 Aug; 27(12):1248-61. PubMed ID: 27193120
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An UV-photo and ionic dual responsive interpenetrating network hydrogel with shape memory and self-healing properties.
    Li Z; Cai J; Wei M; Chen J
    RSC Adv; 2022 May; 12(24):15105-15114. PubMed ID: 35693233
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cellulose nanocrystals enabled sustainable polycaprolactone based shape memory polyurethane bionanocomposites.
    Gupta A; Mekonnen TH
    J Colloid Interface Sci; 2022 Apr; 611():726-738. PubMed ID: 34876266
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biodegradable shape memory polymers functionalized with anti-biofouling interpenetrating polymer networks.
    Dueramae I; Nishida M; Nakaji-Hirabayashi T; Matsumura K; Kitano H
    J Mater Chem B; 2016 Aug; 4(32):5394-5404. PubMed ID: 32263463
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The Effect of 4-Octyldecyloxybenzoic Acid on Liquid-Crystalline Polyurethane Composites with Triple-Shape Memory and Self-Healing Properties.
    Ban J; Zhu L; Chen S; Wang Y
    Materials (Basel); 2016 Sep; 9(9):. PubMed ID: 28773914
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Design and in vitro evaluation of electrospun shape memory polyurethanes for self-fitting tissue engineering grafts and drug delivery systems.
    Bil M; Kijeńska-Gawrońska E; Głodkowska-Mrówka E; Manda-Handzlik A; Mrówka P
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110675. PubMed ID: 32204102
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Block Copolymers of Poly(ω-Pentadecalactone) in Segmented Polyurethanes: Novel Biodegradable Shape Memory Polyurethanes.
    Czifrák K; Lakatos C; Árpád Kordován M; Nagy L; Daróczi L; Zsuga M; Kéki S
    Polymers (Basel); 2020 Aug; 12(9):. PubMed ID: 32859018
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Shape Memory Polyurethane Biocomposites Based on Toughened Polycaprolactone Promoted by Nano-Chitosan.
    Gupta A; Kim BS
    Nanomaterials (Basel); 2019 Feb; 9(2):. PubMed ID: 30736481
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Thermoresponsive semicrystalline poly(ε-caprolactone) networks: exploiting cross-linking with cinnamoyl moieties to design polymers with tunable shape memory.
    Garle A; Kong S; Ojha U; Budhlall BM
    ACS Appl Mater Interfaces; 2012 Feb; 4(2):645-57. PubMed ID: 22252722
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A Photoorganizable Triple Shape Memory Polymer for Deployable Devices.
    Sun J; Peng B; Lu Y; Zhang X; Wei J; Zhu C; Yu Y
    Small; 2022 Mar; 18(9):e2106443. PubMed ID: 34918481
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Poly(epsilon-caprolactone) polyurethane and its shape-memory property.
    Ping P; Wang W; Chen X; Jing X
    Biomacromolecules; 2005; 6(2):587-92. PubMed ID: 15762617
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Transparent, High-Strength, and Shape Memory Hydrogels from Thermo-Responsive Amino Acid-Derived Vinyl Polymer Networks.
    Koga T; Tomimori K; Higashi N
    Macromol Rapid Commun; 2020 Apr; 41(7):e1900650. PubMed ID: 32078206
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Catalyst-Free Thermoset Polyurethane with Permanent Shape Reconfigurability and Highly Tunable Triple-Shape Memory Performance.
    Zheng N; Hou J; Xu Y; Fang Z; Zou W; Zhao Q; Xie T
    ACS Macro Lett; 2017 Apr; 6(4):326-330. PubMed ID: 35610855
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.