These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. ¹H, ¹³C and ¹⁵N backbone and side-chain resonance assignments of Drosophila melanogaster Ssu72. Werner-Allen JW; Zhou P Biomol NMR Assign; 2012 Apr; 6(1):57-61. PubMed ID: 21732054 [TBL] [Abstract][Full Text] [Related]
23. Genetic and structural analysis of the essential fission yeast RNA polymerase II CTD phosphatase Fcp1. Schwer B; Ghosh A; Sanchez AM; Lima CD; Shuman S RNA; 2015 Jun; 21(6):1135-46. PubMed ID: 25883047 [TBL] [Abstract][Full Text] [Related]
24. Functional interaction of human Ssu72 with RNA polymerase II complexes. Spector BM; Turek ME; Price DH PLoS One; 2019; 14(3):e0213598. PubMed ID: 30901332 [TBL] [Abstract][Full Text] [Related]
25. Chemical Tools To Decipher Regulation of Phosphatases by Proline Isomerization on Eukaryotic RNA Polymerase II. Mayfield JE; Fan S; Wei S; Zhang M; Li B; Ellington AD; Etzkorn FA; Zhang YJ ACS Chem Biol; 2015 Oct; 10(10):2405-14. PubMed ID: 26332362 [TBL] [Abstract][Full Text] [Related]
26. Molecular dynamics study of the phosphorylation effect on the conformational states of the C-terminal domain of RNA polymerase II. Yonezawa Y J Phys Chem B; 2014 May; 118(17):4471-8. PubMed ID: 24611769 [TBL] [Abstract][Full Text] [Related]
27. Proteomics studies of the interactome of RNA polymerase II C-terminal repeated domain. Pineda G; Shen Z; de Albuquerque CP; Reynoso E; Chen J; Tu CC; Tang W; Briggs S; Zhou H; Wang JY BMC Res Notes; 2015 Oct; 8():616. PubMed ID: 26515650 [TBL] [Abstract][Full Text] [Related]
28. A common structural scaffold in CTD phosphatases that supports distinct catalytic mechanisms. Pons T; Paramonov I; Boullosa C; Ibáñez K; Rojas AM; Valencia A Proteins; 2014 Jan; 82(1):103-18. PubMed ID: 23900790 [TBL] [Abstract][Full Text] [Related]
29. Ssu72 phosphatase-dependent erasure of phospho-Ser7 marks on the RNA polymerase II C-terminal domain is essential for viability and transcription termination. Zhang DW; Mosley AL; Ramisetty SR; Rodríguez-Molina JB; Washburn MP; Ansari AZ J Biol Chem; 2012 Mar; 287(11):8541-51. PubMed ID: 22235117 [TBL] [Abstract][Full Text] [Related]
30. A gene-specific role for the Ssu72 RNAPII CTD phosphatase in HIV-1 Tat transactivation. Chen Y; Zhang L; Estarás C; Choi SH; Moreno L; Karn J; Moresco JJ; Yates JR; Jones KA Genes Dev; 2014 Oct; 28(20):2261-75. PubMed ID: 25319827 [TBL] [Abstract][Full Text] [Related]
31. The RNA polymerase II CTD "orphan" residues: Emerging insights into the functions of Tyr-1, Thr-4, and Ser-7. Yurko NM; Manley JL Transcription; 2018; 9(1):30-40. PubMed ID: 28771071 [TBL] [Abstract][Full Text] [Related]
32. Structural Motifs for CTD Kinase Specificity on RNA Polymerase II during Eukaryotic Transcription. Ramani MKV; Escobar EE; Irani S; Mayfield JE; Moreno RY; Butalewicz JP; Cotham VC; Wu H; Tadros M; Brodbelt JS; Zhang YJ ACS Chem Biol; 2020 Aug; 15(8):2259-2272. PubMed ID: 32568517 [TBL] [Abstract][Full Text] [Related]
33. Studies of nematode TFIIE function reveal a link between Ser-5 phosphorylation of RNA polymerase II and the transition from transcription initiation to elongation. Yamamoto S; Watanabe Y; van der Spek PJ; Watanabe T; Fujimoto H; Hanaoka F; Ohkuma Y Mol Cell Biol; 2001 Jan; 21(1):1-15. PubMed ID: 11113176 [TBL] [Abstract][Full Text] [Related]
34. The RNA Pol II CTD phosphatase Fcp1 is essential for normal development in Drosophila melanogaster. Tombácz I; Schauer T; Juhász I; Komonyi O; Boros I Gene; 2009 Oct; 446(2):58-67. PubMed ID: 19632310 [TBL] [Abstract][Full Text] [Related]
35. Genetic interactions and transcriptomics implicate fission yeast CTD prolyl isomerase Pin1 as an agent of RNA 3' processing and transcription termination that functions via its effects on CTD phosphatase Ssu72. Sanchez AM; Garg A; Shuman S; Schwer B Nucleic Acids Res; 2020 May; 48(9):4811-4826. PubMed ID: 32282918 [TBL] [Abstract][Full Text] [Related]
36. Specific interaction of the transcription elongation regulator TCERG1 with RNA polymerase II requires simultaneous phosphorylation at Ser2, Ser5, and Ser7 within the carboxyl-terminal domain repeat. Liu J; Fan S; Lee CJ; Greenleaf AL; Zhou P J Biol Chem; 2013 Apr; 288(15):10890-901. PubMed ID: 23436654 [TBL] [Abstract][Full Text] [Related]
37. The structure of Fcp1, an essential RNA polymerase II CTD phosphatase. Ghosh A; Shuman S; Lima CD Mol Cell; 2008 Nov; 32(4):478-90. PubMed ID: 19026779 [TBL] [Abstract][Full Text] [Related]
38. CTD tyrosine phosphorylation impairs termination factor recruitment to RNA polymerase II. Mayer A; Heidemann M; Lidschreiber M; Schreieck A; Sun M; Hintermair C; Kremmer E; Eick D; Cramer P Science; 2012 Jun; 336(6089):1723-5. PubMed ID: 22745433 [TBL] [Abstract][Full Text] [Related]
39. Structurally conserved and functionally divergent yeast Ssu72 phosphatases. Rodríguez-Torres AM; Lamas-Maceiras M; García-Díaz R; Freire-Picos MA FEBS Lett; 2013 Aug; 587(16):2617-22. PubMed ID: 23831060 [TBL] [Abstract][Full Text] [Related]
40. Nuclear c-Abl is a COOH-terminal repeated domain (CTD)-tyrosine (CTD)-tyrosine kinase-specific for the mammalian RNA polymerase II: possible role in transcription elongation. Baskaran R; Escobar SR; Wang JY Cell Growth Differ; 1999 Jun; 10(6):387-96. PubMed ID: 10392900 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]