These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 30971428)

  • 41. The repetitive C-terminal domain of RNA polymerase II: multiple conformational states drive the transcription cycle.
    Lin PS; Tremeau-Bravard A; Dahmus ME
    Chem Rec; 2003; 3(4):235-45. PubMed ID: 14595832
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Protein phosphatase-1 dephosphorylates the C-terminal domain of RNA polymerase-II.
    Washington K; Ammosova T; Beullens M; Jerebtsova M; Kumar A; Bollen M; Nekhai S
    J Biol Chem; 2002 Oct; 277(43):40442-8. PubMed ID: 12185079
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Role of Ser7 phosphorylation of the CTD during transcription of snRNA genes.
    Egloff S
    RNA Biol; 2012 Aug; 9(8):1033-8. PubMed ID: 22858677
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dephosphorylating eukaryotic RNA polymerase II.
    Mayfield JE; Burkholder NT; Zhang YJ
    Biochim Biophys Acta; 2016 Apr; 1864(4):372-87. PubMed ID: 26779935
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The fission yeast Pin1 peptidyl-prolyl isomerase promotes dissociation of Sty1 MAPK from RNA polymerase II and recruits Ssu72 phosphatase to facilitate oxidative stress induced transcription.
    Wang YT; Hsiao WY; Wang SW
    Nucleic Acids Res; 2021 Jan; 49(2):805-817. PubMed ID: 33410907
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A universal RNA polymerase II CTD cycle is orchestrated by complex interplays between kinase, phosphatase, and isomerase enzymes along genes.
    Bataille AR; Jeronimo C; Jacques PÉ; Laramée L; Fortin MÈ; Forest A; Bergeron M; Hanes SD; Robert F
    Mol Cell; 2012 Jan; 45(2):158-70. PubMed ID: 22284676
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Conformation of the RNA polymerase II C-terminal domain: circular dichroism of long and short fragments.
    Bienkiewicz EA; Moon Woody A; Woody RW
    J Mol Biol; 2000 Mar; 297(1):119-33. PubMed ID: 10704311
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Drosophila Pgc protein inhibits P-TEFb recruitment to chromatin in primordial germ cells.
    Hanyu-Nakamura K; Sonobe-Nojima H; Tanigawa A; Lasko P; Nakamura A
    Nature; 2008 Feb; 451(7179):730-3. PubMed ID: 18200011
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Opposing effects of Ctk1 kinase and Fcp1 phosphatase at Ser 2 of the RNA polymerase II C-terminal domain.
    Cho EJ; Kobor MS; Kim M; Greenblatt J; Buratowski S
    Genes Dev; 2001 Dec; 15(24):3319-29. PubMed ID: 11751637
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Requirements for RNA polymerase II carboxyl-terminal domain for activated transcription of human retroviruses human T-cell lymphotropic virus I and HIV-1.
    Chun RF; Jeang KT
    J Biol Chem; 1996 Nov; 271(44):27888-94. PubMed ID: 8910388
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An unusual eukaryotic protein phosphatase required for transcription by RNA polymerase II and CTD dephosphorylation in S. cerevisiae.
    Kobor MS; Archambault J; Lester W; Holstege FC; Gileadi O; Jansma DB; Jennings EG; Kouyoumdjian F; Davidson AR; Young RA; Greenblatt J
    Mol Cell; 1999 Jul; 4(1):55-62. PubMed ID: 10445027
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Heptad-Specific Phosphorylation of RNA Polymerase II CTD.
    Schüller R; Forné I; Straub T; Schreieck A; Texier Y; Shah N; Decker TM; Cramer P; Imhof A; Eick D
    Mol Cell; 2016 Jan; 61(2):305-14. PubMed ID: 26799765
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Trypanosoma brucei RNA polymerase II is phosphorylated in the absence of carboxyl-terminal domain heptapeptide repeats.
    Chapman AB; Agabian N
    J Biol Chem; 1994 Feb; 269(7):4754-60. PubMed ID: 8106443
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Determinants for dephosphorylation of the RNA polymerase II C-terminal domain by Scp1.
    Zhang Y; Kim Y; Genoud N; Gao J; Kelly JW; Pfaff SL; Gill GN; Dixon JE; Noel JP
    Mol Cell; 2006 Dec; 24(5):759-770. PubMed ID: 17157258
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The length, phosphorylation state, and primary structure of the RNA polymerase II carboxyl-terminal domain dictate interactions with mRNA capping enzymes.
    Pei Y; Hausmann S; Ho CK; Schwer B; Shuman S
    J Biol Chem; 2001 Jul; 276(30):28075-82. PubMed ID: 11387325
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Detecting phosphorylation-dependent interactions with the C-terminal domain of RNA polymerase II subunit Rpb1p using a yeast two-hybrid assay.
    Ursic D; Finkel JS; Culbertson MR
    RNA Biol; 2008; 5(1):1-4. PubMed ID: 18388493
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ssu72 Dual-Specific Protein Phosphatase: From Gene to Diseases.
    Hwang S; Kim MH; Lee CW
    Int J Mol Sci; 2021 Apr; 22(7):. PubMed ID: 33917542
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Phosphorylation of RNA polymerase II CTD fragments results in tight binding to the WW domain from the yeast prolyl isomerase Ess1.
    Myers JK; Morris DP; Greenleaf AL; Oas TG
    Biochemistry; 2001 Jul; 40(29):8479-86. PubMed ID: 11456485
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The activity of COOH-terminal domain phosphatase is regulated by a docking site on RNA polymerase II and by the general transcription factors IIF and IIB.
    Chambers RS; Wang BQ; Burton ZF; Dahmus ME
    J Biol Chem; 1995 Jun; 270(25):14962-9. PubMed ID: 7797476
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Tyrosine phosphorylation of mammalian RNA polymerase II carboxyl-terminal domain.
    Baskaran R; Dahmus ME; Wang JY
    Proc Natl Acad Sci U S A; 1993 Dec; 90(23):11167-71. PubMed ID: 7504297
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.