These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 30971625)

  • 1. Activation of extracytoplasmic function sigma factors upon removal of glucolipids and reduction of phosphatidylglycerol content in Bacillus subtilis cells lacking lipoteichoic acid.
    Seki T; Furumi T; Hashimoto M; Hara H; Matsuoka S
    Genes Genet Syst; 2019 Apr; 94(2):71-80. PubMed ID: 30971625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biological functions of glucolipids in Bacillus subtilis.
    Matsuoka S
    Genes Genet Syst; 2018 Apr; 92(5):217-221. PubMed ID: 28993557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucolipids and lipoteichoic acids affect the activity of SigI, an alternative sigma factor, and WalKR, an essential two-component system, in Bacillus subtilis.
    Matsuoka S; Shimizu Y; Nobe K; Matsumoto K; Asai K; Hara H
    Genes Cells; 2022 Feb; 27(2):77-92. PubMed ID: 34910349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Induction of extracytoplasmic function sigma factors in Bacillus subtilis cells with membranes of reduced phosphatidylglycerol content.
    Hashimoto M; Takahashi H; Hara Y; Hara H; Asai K; Sadaie Y; Matsumoto K
    Genes Genet Syst; 2009 Jun; 84(3):191-8. PubMed ID: 19745567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suppression of abnormal morphology and extracytoplasmic function sigma activity in Bacillus subtilis ugtP mutant cells by expression of heterologous glucolipid synthases from Acholeplasma laidlawii.
    Matsuoka S; Seki T; Matsumoto K; Hara H
    Biosci Biotechnol Biochem; 2016 Dec; 80(12):2325-2333. PubMed ID: 27684739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repression of the activities of two extracytoplasmic function σ factors, σM and σV, of Bacillus subtilis by glucolipids in Escherichia coli cells.
    Seki T; Mineshima R; Hashimoto M; Matsumoto K; Hara H; Matsuoka S
    Genes Genet Syst; 2015; 90(2):109-14. PubMed ID: 26399770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Induction of extracytoplasmic function sigma factors in Bacillus subtilis cells with defects in lipoteichoic acid synthesis.
    Hashimoto M; Seki T; Matsuoka S; Hara H; Asai K; Sadaie Y; Matsumoto K
    Microbiology (Reading); 2013 Jan; 159(Pt 1):23-35. PubMed ID: 23103977
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Bacillus subtilis essential gene dgkB is dispensable in mutants with defective lipoteichoic acid synthesis.
    Matsuoka S; Hashimoto M; Kamiya Y; Miyazawa T; Ishikawa K; Hara H; Matsumoto K
    Genes Genet Syst; 2011; 86(6):365-76. PubMed ID: 22451476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Abnormal morphology of Bacillus subtilis ugtP mutant cells lacking glucolipids.
    Matsuoka S; Chiba M; Tanimura Y; Hashimoto M; Hara H; Matsumoto K
    Genes Genet Syst; 2011; 86(5):295-304. PubMed ID: 22362028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Incorporation of D-alanine into lipoteichoic acid and wall teichoic acid in Bacillus subtilis. Identification of genes and regulation.
    Perego M; Glaser P; Minutello A; Strauch MA; Leopold K; Fischer W
    J Biol Chem; 1995 Jun; 270(26):15598-606. PubMed ID: 7797557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Products of phosphatidylglycerol turnover in two Bacillus strains with and without lipoteichoic acid in the cells.
    Koga Y; Nishihara M; Morii H
    Biochim Biophys Acta; 1984 Mar; 793(1):86-94. PubMed ID: 6422993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacillus subtilis extracytoplasmic function (ECF) sigma factors and defense of the cell envelope.
    Helmann JD
    Curr Opin Microbiol; 2016 Apr; 30():122-132. PubMed ID: 26901131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzymatic activities and functional interdependencies of Bacillus subtilis lipoteichoic acid synthesis enzymes.
    Wörmann ME; Corrigan RM; Simpson PJ; Matthews SJ; Gründling A
    Mol Microbiol; 2011 Feb; 79(3):566-83. PubMed ID: 21255105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacillus subtilis σ(V) confers lysozyme resistance by activation of two cell wall modification pathways, peptidoglycan O-acetylation and D-alanylation of teichoic acids.
    Guariglia-Oropeza V; Helmann JD
    J Bacteriol; 2011 Nov; 193(22):6223-32. PubMed ID: 21926231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Signal Peptidase Is Necessary and Sufficient for Site 1 Cleavage of RsiV in Bacillus subtilis in Response to Lysozyme.
    Castro AN; Lewerke LT; Hastie JL; Ellermeier CD
    J Bacteriol; 2018 Jun; 200(11):. PubMed ID: 29358498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contributions of the σ(W) , σ(M) and σ(X) regulons to the lantibiotic resistome of Bacillus subtilis.
    Kingston AW; Liao X; Helmann JD
    Mol Microbiol; 2013 Nov; 90(3):502-18. PubMed ID: 23980836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extra cytoplasmic function σ factor activation.
    Ho TD; Ellermeier CD
    Curr Opin Microbiol; 2012 Apr; 15(2):182-8. PubMed ID: 22381678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphoglycerol-type wall and lipoteichoic acids are enantiomeric polymers differentiated by the stereospecific glycerophosphodiesterase GlpQ.
    Walter A; Unsleber S; Rismondo J; Jorge AM; Peschel A; Gründling A; Mayer C
    J Biol Chem; 2020 Mar; 295(12):4024-4034. PubMed ID: 32047114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Bacillus subtilis extracytoplasmic function σ factor σ(V) is induced by lysozyme and provides resistance to lysozyme.
    Ho TD; Hastie JL; Intile PJ; Ellermeier CD
    J Bacteriol; 2011 Nov; 193(22):6215-22. PubMed ID: 21856855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Promoter Recognition by Extracytoplasmic Function σ Factors: Analyzing DNA and Protein Interaction Motifs.
    Guzina J; Djordjevic M
    J Bacteriol; 2016 Jul; 198(14):1927-1938. PubMed ID: 27137497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.