These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 30971625)

  • 21. Teichoic Acid Polymers Affect Expression and Localization of dl-Endopeptidase LytE Required for Lateral Cell Wall Hydrolysis in Bacillus subtilis.
    Kasahara J; Kiriyama Y; Miyashita M; Kondo T; Yamada T; Yazawa K; Yoshikawa R; Yamamoto H
    J Bacteriol; 2016 Jun; 198(11):1585-1594. PubMed ID: 27002131
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Bacillus subtilis sigma(M) regulon and its contribution to cell envelope stress responses.
    Eiamphungporn W; Helmann JD
    Mol Microbiol; 2008 Feb; 67(4):830-48. PubMed ID: 18179421
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transcriptomic and phenotypic characterization of a Bacillus subtilis strain without extracytoplasmic function σ factors.
    Luo Y; Asai K; Sadaie Y; Helmann JD
    J Bacteriol; 2010 Nov; 192(21):5736-45. PubMed ID: 20817771
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biosynthesis of the glycolipid anchor in lipoteichoic acid of Staphylococcus aureus RN4220: role of YpfP, the diglucosyldiacylglycerol synthase.
    Kiriukhin MY; Debabov DV; Shinabarger DL; Neuhaus FC
    J Bacteriol; 2001 Jun; 183(11):3506-14. PubMed ID: 11344159
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis of teichoic acid biosynthesis regulation reveals that the extracytoplasmic function sigma factor sigmaM is induced by phosphate depletion in Bacillus subtilis W23.
    Minnig K; Lazarevic V; Soldo B; Mauël C
    Microbiology (Reading); 2005 Sep; 151(Pt 9):3041-3049. PubMed ID: 16151214
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Discovery of genes required for lipoteichoic acid glycosylation predicts two distinct mechanisms for wall teichoic acid glycosylation.
    Rismondo J; Percy MG; Gründling A
    J Biol Chem; 2018 Mar; 293(9):3293-3306. PubMed ID: 29343515
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Engineering orthogonal synthetic timer circuits based on extracytoplasmic function σ factors.
    Pinto D; Vecchione S; Wu H; Mauri M; Mascher T; Fritz G
    Nucleic Acids Res; 2018 Aug; 46(14):7450-7464. PubMed ID: 29986061
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analysis of the role of Bacillus subtilis σ(M) in β-lactam resistance reveals an essential role for c-di-AMP in peptidoglycan homeostasis.
    Luo Y; Helmann JD
    Mol Microbiol; 2012 Feb; 83(3):623-39. PubMed ID: 22211522
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Galactolipids from Arabidopsis thaliana can replace the function of gluco lipids in Bacillus subtilis.
    Kawakami M; Matsuoka S
    J Gen Appl Microbiol; 2022 Sep; 68(2):54-61. PubMed ID: 35370229
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Anti-sigma factor-mediated cell surface stress responses in Bacillus subtilis.
    Asai K
    Genes Genet Syst; 2018 Apr; 92(5):223-234. PubMed ID: 29343670
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Definition of the σ(W) regulon of Bacillus subtilis in the absence of stress.
    Zweers JC; Nicolas P; Wiegert T; van Dijl JM; Denham EL
    PLoS One; 2012; 7(11):e48471. PubMed ID: 23155385
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Streptococcus pneumoniae, S. mitis, and S. oralis Produce a Phosphatidylglycerol-Dependent,
    Wei Y; Joyce LR; Wall AM; Guan Z; Palmer KL
    mSphere; 2021 Feb; 6(1):. PubMed ID: 33627509
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stress activation of Bacillus subtilis sigma B can occur in the absence of the sigma B negative regulator RsbX.
    Voelker U; Luo T; Smirnova N; Haldenwang W
    J Bacteriol; 1997 Mar; 179(6):1980-4. PubMed ID: 9068644
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The activity of σV, an extracytoplasmic function σ factor of Bacillus subtilis, is controlled by regulated proteolysis of the anti-σ factor RsiV.
    Hastie JL; Williams KB; Ellermeier CD
    J Bacteriol; 2013 Jul; 195(14):3135-44. PubMed ID: 23687273
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Bacillus subtilis ABC transporter EcsAB influences intramembrane proteolysis through RasP.
    Heinrich J; Lundén T; Kontinen VP; Wiegert T
    Microbiology (Reading); 2008 Jul; 154(Pt 7):1989-1997. PubMed ID: 18599827
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cationic antimicrobial peptides elicit a complex stress response in Bacillus subtilis that involves ECF-type sigma factors and two-component signal transduction systems.
    Pietiäinen M; Gardemeister M; Mecklin M; Leskelä S; Sarvas M; Kontinen VP
    Microbiology (Reading); 2005 May; 151(Pt 5):1577-1592. PubMed ID: 15870467
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Resonance assignments of the cytoplasmic domain of ECF sigma factor W pathway protein YsdB from Bacillus subtilis.
    Li Y; Li G; Wang Z; Chen W; Wang H; Wang Y; Liu B
    Biomol NMR Assign; 2021 Apr; 15(1):103-106. PubMed ID: 33398628
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Activation of the extracytoplasmic function σ factor σ
    Ho TD; Ellermeier CD
    Mol Microbiol; 2019 Aug; 112(2):410-419. PubMed ID: 31286585
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evidence of a bacterial receptor for lysozyme: binding of lysozyme to the anti-σ factor RsiV controls activation of the ecf σ factor σV.
    Hastie JL; Williams KB; Sepúlveda C; Houtman JC; Forest KT; Ellermeier CD
    PLoS Genet; 2014 Oct; 10(10):e1004643. PubMed ID: 25275625
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regulation of antimicrobial resistance by extracytoplasmic function (ECF) sigma factors.
    Woods EC; McBride SM
    Microbes Infect; 2017; 19(4-5):238-248. PubMed ID: 28153747
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.