These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

544 related articles for article (PubMed ID: 30971820)

  • 1. Developmental origin, functional maintenance and genetic rescue of osteoclasts.
    Jacome-Galarza CE; Percin GI; Muller JT; Mass E; Lazarov T; Eitler J; Rauner M; Yadav VK; Crozet L; Bohm M; Loyher PL; Karsenty G; Waskow C; Geissmann F
    Nature; 2019 Apr; 568(7753):541-545. PubMed ID: 30971820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Committed osteoclast precursors colonize the bone and improve the phenotype of a mouse model of autosomal recessive osteopetrosis.
    Cappariello A; Berardi AC; Peruzzi B; Del Fattore A; Ugazio A; Bottazzo GF; Teti A
    J Bone Miner Res; 2010 Jan; 25(1):106-13. PubMed ID: 20091929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hematopoietic Stem Cell-Targeted Neonatal Gene Therapy with a Clinically Applicable Lentiviral Vector Corrects Osteopetrosis in
    Löfvall H; Rothe M; Schambach A; Henriksen K; Richter J; Moscatelli I
    Hum Gene Ther; 2019 Nov; 30(11):1395-1404. PubMed ID: 31179768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The origin of osteoclasts.
    Loutit JF; Nisbet NW
    Immunobiology; 1982 Apr; 161(3-4):193-203. PubMed ID: 7047369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osteopetrosis in mice lacking haematopoietic transcription factor PU.1.
    Tondravi MM; McKercher SR; Anderson K; Erdmann JM; Quiroz M; Maki R; Teitelbaum SL
    Nature; 1997 Mar; 386(6620):81-4. PubMed ID: 9052784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PDK1 is important lipid kinase for RANKL-induced osteoclast formation and function via the regulation of the Akt-GSK3β-NFATc1 signaling cascade.
    Xiao D; Zhou Q; Gao Y; Cao B; Zhang Q; Zeng G; Zong S
    J Cell Biochem; 2020 Nov; 121(11):4542-4557. PubMed ID: 32048762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent developments in the understanding of the pathophysiology of osteopetrosis.
    Felix R; Hofstetter W; Cecchini MG
    Eur J Endocrinol; 1996 Feb; 134(2):143-56. PubMed ID: 8630510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Infant cynomolgus monkeys exposed to denosumab in utero exhibit an osteoclast-poor osteopetrotic-like skeletal phenotype at birth and in the early postnatal period.
    Boyce RW; Varela A; Chouinard L; Bussiere JL; Chellman GJ; Ominsky MS; Pyrah IT
    Bone; 2014 Jul; 64():314-25. PubMed ID: 24727159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Bone and Stem Cells. Regulation of haematopoietic stem cell maintenance and mobilization by osteoclasts].
    Miyamoto T
    Clin Calcium; 2014 Apr; 24(4):527-31. PubMed ID: 24681498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinct osteoclast precursors in the bone marrow and extramedullary organs characterized by responsiveness to Toll-like receptor ligands and TNF-alpha.
    Hayashi S; Yamada T; Tsuneto M; Yamane T; Takahashi M; Shultz LD; Yamazaki H
    J Immunol; 2003 Nov; 171(10):5130-9. PubMed ID: 14607912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Osteopetrosis.
    Stark Z; Savarirayan R
    Orphanet J Rare Dis; 2009 Feb; 4():5. PubMed ID: 19232111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Bone and Stem Cells. Molecular mechanisms of the differentiation and activation of osteoclasts derived from hematopoietic cells].
    Hayashi M; Nakashima T
    Clin Calcium; 2014 Apr; 24(4):487-500. PubMed ID: 24681494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TCIRG1 Transgenic Rescue of Osteoclast Function Using Induced Pluripotent Stem Cells Derived from Patients with Infantile Malignant Autosomal Recessive Osteopetrosis.
    Chen W; Twaroski K; Eide C; Riddle MJ; Orchard PJ; Tolar J
    J Bone Joint Surg Am; 2019 Nov; 101(21):1939-1947. PubMed ID: 31567691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An adult osteopetrosis model in medaka reveals the importance of osteoclast function for bone remodeling in teleost fish.
    To TT; Witten PE; Huysseune A; Winkler C
    Comp Biochem Physiol C Toxicol Pharmacol; 2015 Dec; 178():68-75. PubMed ID: 26334373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Limited rescue of osteoclast-poor osteopetrosis after successful engraftment by cord blood from an unrelated donor.
    Nicholls BM; Bredius RG; Hamdy NA; Gerritsen EJ; Lankester AC; Hogendoorn PC; Nesbitt SA; Horton MA; Flanagan AM
    J Bone Miner Res; 2005 Dec; 20(12):2264-70. PubMed ID: 16294279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Macrophage colony-stimulating factor and receptor activator NF-kappaB ligand fail to rescue osteoclast-poor human malignant infantile osteopetrosis in vitro.
    Flanagan AM; Massey HM; Wilson C; Vellodi A; Horton MA; Steward CG
    Bone; 2002 Jan; 30(1):85-90. PubMed ID: 11792569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of vitamin D binding protein-macrophage activating factor and colony-stimulating factor-1 on hematopoietic cells in normal and osteopetrotic rats.
    Benis KA; Schneider GB
    Blood; 1996 Oct; 88(8):2898-905. PubMed ID: 8874186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The mouse osteopetrotic grey-lethal mutation induces a defect in osteoclast maturation/function.
    Rajapurohitam V; Chalhoub N; Benachenhou N; Neff L; Baron R; Vacher J
    Bone; 2001 May; 28(5):513-23. PubMed ID: 11344051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osteoclasts are dispensable for hematopoietic stem cell maintenance and mobilization.
    Miyamoto K; Yoshida S; Kawasumi M; Hashimoto K; Kimura T; Sato Y; Kobayashi T; Miyauchi Y; Hoshi H; Iwasaki R; Miyamoto H; Hao W; Morioka H; Chiba K; Kobayashi T; Yasuda H; Penninger JM; Toyama Y; Suda T; Miyamoto T
    J Exp Med; 2011 Oct; 208(11):2175-81. PubMed ID: 22006978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neonatal changes of osteoclasts in osteopetrosis (op/op) mice defective in production of functional macrophage colony-stimulating factor (M-CSF) protein and effects of M-CSF on osteoclast development and differentiation.
    Umeda S; Takahashi K; Naito M; Shultz LD; Takagi K
    J Submicrosc Cytol Pathol; 1996 Jan; 28(1):13-26. PubMed ID: 8929623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.