These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 30972036)

  • 1. Carbon Amendments Induce Shifts in Nutrient Use, Inhibitory, and Resistance Phenotypes Among Soilborne
    Dundore-Arias JP; Felice L; Dill-Macky R; Kinkel LL
    Front Microbiol; 2019; 10():498. PubMed ID: 30972036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon Amendments Influence Composition and Functional Capacities of Indigenous Soil Microbiomes.
    Dundore-Arias JP; Castle SC; Felice L; Dill-Macky R; Kinkel LL
    Front Mol Biosci; 2019; 6():151. PubMed ID: 31993439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resource amendments influence density and competitive phenotypes of Streptomyces in soil.
    Schlatter D; Fubuh A; Xiao K; Hernandez D; Hobbie S; Kinkel L
    Microb Ecol; 2009 Apr; 57(3):413-20. PubMed ID: 18704556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resource use of soilborne Streptomyces varies with location, phylogeny, and nitrogen amendment.
    Schlatter DC; DavelosBaines AL; Xiao K; Kinkel LL
    Microb Ecol; 2013 Nov; 66(4):961-71. PubMed ID: 23959115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Do tradeoffs structure antibiotic inhibition, resistance, and resource use among soil-borne Streptomyces?
    Schlatter DC; Kinkel LL
    BMC Evol Biol; 2015 Sep; 15():186. PubMed ID: 26370703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plant Community Richness Mediates Inhibitory Interactions and Resource Competition between Streptomyces and Fusarium Populations in the Rhizosphere.
    Essarioui A; LeBlanc N; Kistler HC; Kinkel LL
    Microb Ecol; 2017 Jul; 74(1):157-167. PubMed ID: 28058470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative Metagenomics Reveals Enhanced Nutrient Cycling Potential after 2 Years of Biochar Amendment in a Tropical Oxisol.
    Yu J; Deem LM; Crow SE; Deenik J; Penton CR
    Appl Environ Microbiol; 2019 Jun; 85(11):. PubMed ID: 30952661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of organic amendment on soil aggregation and microbial community composition during drying-rewetting alternation.
    Sun D; Li K; Bi Q; Zhu J; Zhang Q; Jin C; Lu L; Lin X
    Sci Total Environ; 2017 Jan; 574():735-743. PubMed ID: 27664760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Densities and inhibitory phenotypes among indigenous Streptomyces spp. vary across native and agricultural habitats.
    Otto-Hanson LK; Kinkel LL
    Microb Ecol; 2020 Apr; 79(3):694-705. PubMed ID: 31656973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporal variability in nutrient use among Streptomyces suggests dynamic niche partitioning.
    Lane BR; Anderson HM; Dicko AH; Fulcher MR; Kinkel LL
    Environ Microbiol; 2023 Dec; 25(12):3527-3535. PubMed ID: 37669222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Soil suppressiveness to fusarium disease: shifts in root microbiome associated with reduction of pathogen root colonization.
    Klein E; Ofek M; Katan J; Minz D; Gamliel A
    Phytopathology; 2013 Jan; 103(1):23-33. PubMed ID: 22950737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subinhibitory antibiotic concentrations mediate nutrient use and competition among soil streptomyces.
    Vaz Jauri P; Bakker MG; Salomon CE; Kinkel LL
    PLoS One; 2013; 8(12):e81064. PubMed ID: 24339897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Daily changes of infections by Pythium ultimum after a nutrient impulse in organic versus conventional soils.
    He M; Ma W; Tian G; Blok W; Khodzaeva A; Zelenev VV; Semenov AM; van Bruggen AH
    Phytopathology; 2010 Jun; 100(6):593-600. PubMed ID: 20465415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Short-term fluctuations of sugar beet damping-off by Pythium ultimum in relation to changes in bacterial communities after organic amendments to two soils.
    He M; Tian G; Semenov AM; van Bruggen AH
    Phytopathology; 2012 Apr; 102(4):413-20. PubMed ID: 22150210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Manipulation of rhizosphere bacterial communities to induce suppressive soils.
    Mazzola M
    J Nematol; 2007 Sep; 39(3):213-20. PubMed ID: 19259490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organic Residue Amendments to Modulate Greenhouse Gas Emissions From Agricultural Soils.
    Brenzinger K; Drost SM; Korthals G; Bodelier PLE
    Front Microbiol; 2018; 9():3035. PubMed ID: 30581429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-term nitrogen addition in maize monocultures reduces in vitro inhibition of actinomycete standards by soil-borne actinomycetes.
    Gieske MF; Kinkel LL
    FEMS Microbiol Ecol; 2020 Oct; 96(11):. PubMed ID: 32857848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of mesotrione at different doses in an amended soil: Dissipation and effect on the soil microbial biomass and activity.
    Pose-Juan E; Sánchez-Martín MJ; Herrero-Hernández E; Rodríguez-Cruz MS
    Sci Total Environ; 2015 Dec; 536():31-38. PubMed ID: 26188530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Can resource-use traits predict native vs. exotic plant success in carbon amended soils?
    Steers RJ; Funk JL; Allen EB
    Ecol Appl; 2011 Jun; 21(4):1211-24. PubMed ID: 21774425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial biomass C, N and P in two arctic soils and responses to addition of NPK fertilizer and sugar: implications for plant nutrient uptake.
    Jonasson S; Michelsen A; Schmidt IK; Nielsen EV; Callaghan TV
    Oecologia; 1996 Jun; 106(4):507-515. PubMed ID: 28307451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.