These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 30972336)

  • 1. Long-Term Behavior of Defined Mixed Cultures of
    Engel C; Schattenberg F; Dohnt K; Schröder U; Müller S; Krull R
    Front Bioeng Biotechnol; 2019; 7():60. PubMed ID: 30972336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resilience, Dynamics, and Interactions within a Model Multispecies Exoelectrogenic-Biofilm Community.
    Prokhorova A; Sturm-Richter K; Doetsch A; Gescher J
    Appl Environ Microbiol; 2017 Mar; 83(6):. PubMed ID: 28087529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering Cooperation in an Anaerobic Coculture.
    Kane AL; Szabo RE; Gralnick JA
    Appl Environ Microbiol; 2021 May; 87(11):. PubMed ID: 33771781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elucidating the development of cooperative anode-biofilm-structures.
    Klein E; Wurst R; Rehnlund D; Gescher J
    Biofilm; 2024 Jun; 7():100193. PubMed ID: 38601817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Power output and columbic efficiencies from biofilms of Geobacter sulfurreducens comparable to mixed community microbial fuel cells.
    Nevin KP; Richter H; Covalla SF; Johnson JP; Woodard TL; Orloff AL; Jia H; Zhang M; Lovley DR
    Environ Microbiol; 2008 Oct; 10(10):2505-14. PubMed ID: 18564184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Local Acidification Limits the Current Production and Biofilm Formation of
    Erben J; Pinder ZA; Lüdtke MS; Kerzenmacher S
    Front Microbiol; 2021; 12():660474. PubMed ID: 34194407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of microbial current production as a function of microbe-electrode-interaction.
    Dolch K; Danzer J; Kabbeck T; Bierer B; Erben J; Förster AH; Maisch J; Nick P; Kerzenmacher S; Gescher J
    Bioresour Technol; 2014 Apr; 157():284-92. PubMed ID: 24566287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of SWATH mass spectrometry for quantitative proteomic investigation of Shewanella oneidensis MR-1 biofilms grown on graphite cloth electrodes.
    Grobbler C; Virdis B; Nouwens A; Harnisch F; Rabaey K; Bond PL
    Syst Appl Microbiol; 2015 Mar; 38(2):135-9. PubMed ID: 25523930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extracellular Polymeric Substances from Geobacter sulfurreducens Biofilms in Microbial Fuel Cells.
    Stöckl M; Teubner NC; Holtmann D; Mangold KM; Sand W
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):8961-8968. PubMed ID: 30730701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tale of two metal reducers: comparative proteome analysis of Geobacter sulferreducens PCA and Shewanella oneidensis MR-1.
    Giometti CS
    Methods Biochem Anal; 2006; 49():97-111. PubMed ID: 16929676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tuning Geobacter sulfurreducens biofilm with conjugated polyelectrolyte for increased performance in bioelectrochemical system.
    Ren L; McCuskey SR; Moreland A; Bazan GC; Nguyen TQ
    Biosens Bioelectron; 2019 Nov; 144():111630. PubMed ID: 31505403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Charge transport through Geobacter sulfurreducens biofilms grown on graphite rods.
    Katuri KP; Rengaraj S; Kavanagh P; O'Flaherty V; Leech D
    Langmuir; 2012 May; 28(20):7904-13. PubMed ID: 22524560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogen production by geobacter species and a mixed consortium in a microbial electrolysis cell.
    Call DF; Wagner RC; Logan BE
    Appl Environ Microbiol; 2009 Dec; 75(24):7579-87. PubMed ID: 19820150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DIFFUSION IN BIOFILMS RESPIRING ON ELECTRODES.
    Renslow R; Babauta J; Majors P; Beyenal H
    Energy Environ Sci; 2013; 6(2):595-607. PubMed ID: 23420623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aerated Shewanella oneidensis in continuously fed bioelectrochemical systems for power and hydrogen production.
    Rosenbaum M; Cotta MA; Angenent LT
    Biotechnol Bioeng; 2010 Apr; 105(5):880-8. PubMed ID: 19998276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ monitoring of Shewanella oneidensis MR-1 biofilm growth on gold electrodes by using a Pt microelectrode.
    Bao H; Zheng Z; Yang B; Liu D; Li F; Zhang X; Li Z; Lei L
    Bioelectrochemistry; 2016 Jun; 109():95-100. PubMed ID: 26850925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous shear stress alters metabolism, mass-transport, and growth in electroactive biofilms independent of surface substrate transport.
    Jones AD; Buie CR
    Sci Rep; 2019 Feb; 9(1):2602. PubMed ID: 30796283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structures, Compositions, and Activities of Live Shewanella Biofilms Formed on Graphite Electrodes in Electrochemical Flow Cells.
    Kitayama M; Koga R; Kasai T; Kouzuma A; Watanabe K
    Appl Environ Microbiol; 2017 Sep; 83(17):. PubMed ID: 28625998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facilitated extracellular electron transfer of Geobacter sulfurreducens biofilm with in situ formed gold nanoparticles.
    Chen M; Zhou X; Liu X; Zeng RJ; Zhang F; Ye J; Zhou S
    Biosens Bioelectron; 2018 Jun; 108():20-26. PubMed ID: 29494884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Charge transport in films of Geobacter sulfurreducens on graphite electrodes as a function of film thickness.
    Jana PS; Katuri K; Kavanagh P; Kumar A; Leech D
    Phys Chem Chem Phys; 2014 May; 16(19):9039-46. PubMed ID: 24695860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.