These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

650 related articles for article (PubMed ID: 30972485)

  • 1. A novel strategy for quantification of panoramic en face optical coherence tomography angiography scan field.
    Kadomoto S; Uji A; Muraoka Y; Akagi T; Miyata M; Tsujikawa A
    Graefes Arch Clin Exp Ophthalmol; 2019 Jun; 257(6):1199-1206. PubMed ID: 30972485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NONPERFUSION AREA QUANTIFICATION IN BRANCH RETINAL VEIN OCCLUSION: A Widefield Optical Coherence Tomography Angiography Study.
    Kadomoto S; Muraoka Y; Uji A; Tamiya R; Oritani Y; Kawai K; Ooto S; Murakami T; Iida-Miwa Y; Tsujikawa A
    Retina; 2021 Jun; 41(6):1210-1218. PubMed ID: 33105300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wide-field optical coherence tomography angiography for the detection of proliferative diabetic retinopathy.
    Pichi F; Smith SD; Abboud EB; Neri P; Woodstock E; Hay S; Levine E; Baumal CR
    Graefes Arch Clin Exp Ophthalmol; 2020 Sep; 258(9):1901-1909. PubMed ID: 32474692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of widefield swept-source optical coherence tomography angiography with ultra-widefield fluorescein angiography for the evaluation of lesions in retinal vein occlusion.
    Siying L; Qiaozhu Z; Xinyao H; Linqi Z; Mingwei Z; Jinfeng Q
    BMC Ophthalmol; 2022 Nov; 22(1):422. PubMed ID: 36344951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of retinal nonperfusion in branch retinal vein occlusion using wide-field optical coherence tomography angiography.
    Shiraki A; Sakimoto S; Tsuboi K; Wakabayashi T; Hara C; Fukushima Y; Sayanagi K; Nishida K; Sakaguchi H; Nishida K
    Acta Ophthalmol; 2019 Sep; 97(6):e913-e918. PubMed ID: 30900381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of widefield swept-source optical coherence tomography angiography with ultra-widefield colour fundus photography and fluorescein angiography for detection of lesions in diabetic retinopathy.
    Cui Y; Zhu Y; Wang JC; Lu Y; Zeng R; Katz R; Vingopoulos F; Le R; LaĆ­ns I; Wu DM; Eliott D; Vavvas DG; Husain D; Miller JW; Kim LA; Miller JB
    Br J Ophthalmol; 2021 Apr; 105(4):577-581. PubMed ID: 32591347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Practical Utility of Widefield OCT Angiography to Detect Retinal Neovascularization in Eyes with Proliferative Diabetic Retinopathy.
    Hamada M; Hirai K; Wakabayashi T; Ishida Y; Fukushima M; Kamei M; Tsuboi K
    Ophthalmol Retina; 2024 May; 8(5):481-489. PubMed ID: 38008219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distribution of Diabetic Neovascularization on Ultra-Widefield Fluorescein Angiography and on Simulated Widefield OCT Angiography.
    Russell JF; Flynn HW; Sridhar J; Townsend JH; Shi Y; Fan KC; Scott NL; Hinkle JW; Lyu C; Gregori G; Russell SR; Rosenfeld PJ
    Am J Ophthalmol; 2019 Nov; 207():110-120. PubMed ID: 31194952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The big warp: Registration of disparate retinal imaging modalities and an example overlay of ultrawide-field photos and en-face OCTA images.
    Thuma TBT; Bogovic JA; Gunton KB; Jimenez H; Negreiros B; Pulido JS
    PLoS One; 2023; 18(4):e0284905. PubMed ID: 37098039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visualization of microaneurysms using optical coherence tomography angiography: comparison of OCTA en face, OCT B-scan, OCT en face, FA, and IA images.
    Hamada M; Ohkoshi K; Inagaki K; Ebihara N; Murakami A
    Jpn J Ophthalmol; 2018 Mar; 62(2):168-175. PubMed ID: 29383540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Refining Coats' disease by ultra-widefield imaging and optical coherence tomography angiography.
    Rabiolo A; Marchese A; Sacconi R; Cicinelli MV; Grosso A; Querques L; Querques G; Bandello F
    Graefes Arch Clin Exp Ophthalmol; 2017 Oct; 255(10):1881-1890. PubMed ID: 28875282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential microvascular assessment of retinal vein occlusion with coherence tomography angiography and fluorescein angiography: a blinded comparative study.
    Chung CY; Tang HHY; Li SH; Li KKW
    Int Ophthalmol; 2018 Jun; 38(3):1119-1128. PubMed ID: 28550346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extended field imaging using swept-source optical coherence tomography angiography in retinal vein occlusion.
    Kakihara S; Hirano T; Iesato Y; Imai A; Toriyama Y; Murata T
    Jpn J Ophthalmol; 2018 May; 62(3):274-279. PubMed ID: 29594610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Grading of macular perfusion in retinal vein occlusion using en-face swept-source optical coherence tomography angiography: a retrospective observational case series.
    Moussa M; Leila M; Bessa AS; Lolah M; Abou Shousha M; El Hennawi HM; Hafez TA
    BMC Ophthalmol; 2019 Jun; 19(1):127. PubMed ID: 31182069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Widefield OCT-Angiography and Fluorescein Angiography Assessments of Nonperfusion in Diabetic Retinopathy and Edema Treated with Anti-Vascular Endothelial Growth Factor.
    Couturier A; Rey PA; Erginay A; Lavia C; Bonnin S; Dupas B; Gaudric A; Tadayoni R
    Ophthalmology; 2019 Dec; 126(12):1685-1694. PubMed ID: 31383483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Comparison Between Optical Coherence Tomography Angiography and Fluorescein Angiography for the Imaging of Type 1 Neovascularization.
    Inoue M; Jung JJ; Balaratnasingam C; Dansingani KK; Dhrami-Gavazi E; Suzuki M; de Carlo TE; Shahlaee A; Klufas MA; El Maftouhi A; Duker JS; Ho AC; Maftouhi MQ; Sarraf D; Freund KB;
    Invest Ophthalmol Vis Sci; 2016 Jul; 57(9):OCT314-23. PubMed ID: 27409488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of Multiple En Face Image Averaging on Quantitative Assessment from Optical Coherence Tomography Angiography Images.
    Uji A; Balasubramanian S; Lei J; Baghdasaryan E; Al-Sheikh M; Sadda SR
    Ophthalmology; 2017 Jul; 124(7):944-952. PubMed ID: 28318637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NONPERFUSION ASSESSMENT IN RETINAL VEIN OCCLUSION: Comparison Between Ultra-widefield Fluorescein Angiography and Widefield Optical Coherence Tomography Angiography.
    Glacet-Bernard A; Miere A; Houmane B; Tilleul J; Souied E
    Retina; 2021 Jun; 41(6):1202-1209. PubMed ID: 33105298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Choriocapillaris Imaging Using Multiple En Face Optical Coherence Tomography Angiography Image Averaging.
    Uji A; Balasubramanian S; Lei J; Baghdasaryan E; Al-Sheikh M; Sadda SR
    JAMA Ophthalmol; 2017 Nov; 135(11):1197-1204. PubMed ID: 28983552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Macular Microvascular Changes and Their Correlation With Peripheral Nonperfusion in Branch Retinal Vein Occlusion.
    Ryu G; Park D; Lim J; van Hemert J; Sagong M
    Am J Ophthalmol; 2021 May; 225():57-68. PubMed ID: 33412121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.