These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 30972529)

  • 1. NengoDL: Combining Deep Learning and Neuromorphic Modelling Methods.
    Rasmussen D
    Neuroinformatics; 2019 Oct; 17(4):611-628. PubMed ID: 30972529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nengo and Low-Power AI Hardware for Robust, Embedded Neurorobotics.
    DeWolf T; Jaworski P; Eliasmith C
    Front Neurorobot; 2020; 14():568359. PubMed ID: 33162886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A structure-time parallel implementation of spike-based deep learning.
    Wu X; Wang Y; Tang H; Yan R
    Neural Netw; 2019 May; 113():72-78. PubMed ID: 30785011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selene: a PyTorch-based deep learning library for sequence data.
    Chen KM; Cofer EM; Zhou J; Troyanskaya OG
    Nat Methods; 2019 Apr; 16(4):315-318. PubMed ID: 30923381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Event-driven implementation of deep spiking convolutional neural networks for supervised classification using the SpiNNaker neuromorphic platform.
    Patiño-Saucedo A; Rostro-Gonzalez H; Serrano-Gotarredona T; Linares-Barranco B
    Neural Netw; 2020 Jan; 121():319-328. PubMed ID: 31590013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Benchmarking neuromorphic systems with Nengo.
    Bekolay T; Stewart TC; Eliasmith C
    Front Neurosci; 2015; 9():380. PubMed ID: 26539076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A multimodal convolutional neuro-fuzzy network for emotion understanding of movie clips.
    Nguyen TL; Kavuri S; Lee M
    Neural Netw; 2019 Oct; 118():208-219. PubMed ID: 31299625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Technical Note: PYRO-NN: Python reconstruction operators in neural networks.
    Syben C; Michen M; Stimpel B; Seitz S; Ploner S; Maier AK
    Med Phys; 2019 Nov; 46(11):5110-5115. PubMed ID: 31389023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep learning in spiking neural networks.
    Tavanaei A; Ghodrati M; Kheradpisheh SR; Masquelier T; Maida A
    Neural Netw; 2019 Mar; 111():47-63. PubMed ID: 30682710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biologically plausible deep learning - But how far can we go with shallow networks?
    Illing B; Gerstner W; Brea J
    Neural Netw; 2019 Oct; 118():90-101. PubMed ID: 31254771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep learning in bioinformatics: Introduction, application, and perspective in the big data era.
    Li Y; Huang C; Ding L; Li Z; Pan Y; Gao X
    Methods; 2019 Aug; 166():4-21. PubMed ID: 31022451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neonatal Seizure Detection Using Deep Convolutional Neural Networks.
    Ansari AH; Cherian PJ; Caicedo A; Naulaers G; De Vos M; Van Huffel S
    Int J Neural Syst; 2019 May; 29(4):1850011. PubMed ID: 29747532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DeepEP: a deep learning framework for identifying essential proteins.
    Zeng M; Li M; Wu FX; Li Y; Pan Y
    BMC Bioinformatics; 2019 Dec; 20(Suppl 16):506. PubMed ID: 31787076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redundant feature pruning for accelerated inference in deep neural networks.
    Ayinde BO; Inanc T; Zurada JM
    Neural Netw; 2019 Oct; 118():148-158. PubMed ID: 31279285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuromorphic implementations of neurobiological learning algorithms for spiking neural networks.
    Walter F; Röhrbein F; Knoll A
    Neural Netw; 2015 Dec; 72():152-67. PubMed ID: 26422422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tree-CNN: A hierarchical Deep Convolutional Neural Network for incremental learning.
    Roy D; Panda P; Roy K
    Neural Netw; 2020 Jan; 121():148-160. PubMed ID: 31563011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying complex motifs in massive omics data with a variable-convolutional layer in deep neural network.
    Li JY; Jin S; Tu XM; Ding Y; Gao G
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34219140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. autoBioSeqpy: A Deep Learning Tool for the Classification of Biological Sequences.
    Jing R; Li Y; Xue L; Liu F; Li M; Luo J
    J Chem Inf Model; 2020 Aug; 60(8):3755-3764. PubMed ID: 32786512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning image-based spatial transformations via convolutional neural networks: A review.
    Tustison NJ; Avants BB; Gee JC
    Magn Reson Imaging; 2019 Dec; 64():142-153. PubMed ID: 31200026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inferring the Disease-Associated miRNAs Based on Network Representation Learning and Convolutional Neural Networks.
    Xuan P; Sun H; Wang X; Zhang T; Pan S
    Int J Mol Sci; 2019 Jul; 20(15):. PubMed ID: 31349729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.