BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 30972683)

  • 21. CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels.
    Tang D; Han W; Li P; Miao X; Zhong J
    Bioresour Technol; 2011 Feb; 102(3):3071-6. PubMed ID: 21041075
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A biorefinery for valorization of industrial waste-water and flue gas by microalgae for waste mitigation, carbon-dioxide sequestration and algal biomass production.
    Yadav G; Dash SK; Sen R
    Sci Total Environ; 2019 Oct; 688():129-135. PubMed ID: 31229810
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Simultaneous microalgal biomass production and CO
    Kuo CM; Jian JF; Lin TH; Chang YB; Wan XH; Lai JT; Chang JS; Lin CS
    Bioresour Technol; 2016 Dec; 221():241-250. PubMed ID: 27643732
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cultivation, characterization, and properties of Chlorella vulgaris microalgae with different lipid contents and effect on fast pyrolysis oil composition.
    Adamakis ID; Lazaridis PA; Terzopoulou E; Torofias S; Valari M; Kalaitzi P; Rousonikolos V; Gkoutzikostas D; Zouboulis A; Zalidis G; Triantafyllidis KS
    Environ Sci Pollut Res Int; 2018 Aug; 25(23):23018-23032. PubMed ID: 29859001
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bubble column photobioreactor (BCPR) for cultivating microalgae and microalgal consortium (Co-CC) with additional CO
    Mathivanan K; Ameen F; Zhang R; Ravi G; Beduru S
    Environ Res; 2023 Dec; 238(Pt 2):117284. PubMed ID: 37793593
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mixotrophic cultivation of microalgae using industrial flue gases for biodiesel production.
    Kandimalla P; Desi S; Vurimindi H
    Environ Sci Pollut Res Int; 2016 May; 23(10):9345-54. PubMed ID: 26304814
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CO2 , NOx and SOx removal from flue gas via microalgae cultivation: a critical review.
    Yen HW; Ho SH; Chen CY; Chang JS
    Biotechnol J; 2015 Jun; 10(6):829-39. PubMed ID: 25931246
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhanced lipid accumulation of photoautotrophic microalgae by high-dose CO2 mimics a heterotrophic characterization.
    Sun Z; Dou X; Wu J; He B; Wang Y; Chen YF
    World J Microbiol Biotechnol; 2016 Jan; 32(1):9. PubMed ID: 26712624
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Application of a microalga, Scenedesmus obliquus PF3, for the biological removal of nitric oxide (NO) and carbon dioxide.
    Ma S; Li D; Yu Y; Li D; Yadav RS; Feng Y
    Environ Pollut; 2019 Sep; 252(Pt A):344-351. PubMed ID: 31158663
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Utilization of carbon dioxide in industrial flue gases for the cultivation of microalga Chlorella sp.
    Kao CY; Chen TY; Chang YB; Chiu TW; Lin HY; Chen CD; Chang JS; Lin CS
    Bioresour Technol; 2014 Aug; 166():485-93. PubMed ID: 24950094
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of SO2 and NO on growth of Chlorella sp. KR-1.
    Lee JS; Kim DK; Lee JP; Park SC; Koh JH; Cho HS; Kim SW
    Bioresour Technol; 2002 Mar; 82(1):1-4. PubMed ID: 11848373
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced lipid production in Chlorella pyrenoidosa by continuous culture.
    Wen X; Geng Y; Li Y
    Bioresour Technol; 2014 Jun; 161():297-303. PubMed ID: 24717322
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CO
    Jain D; Ghonse SS; Trivedi T; Fernandes GL; Menezes LD; Damare SR; Mamatha SS; Kumar S; Gupta V
    Bioresour Technol; 2019 Feb; 273():672-676. PubMed ID: 30503579
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of kelp waste extracts on the growth and lipid accumulation of microalgae.
    Zheng S; He M; Jiang J; Zou S; Yang W; Zhang Y; Deng J; Wang C
    Bioresour Technol; 2016 Feb; 201():80-8. PubMed ID: 26638137
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biphasic optimization approach for maximization of lipid production by the microalga Chlorella pyrenoidosa.
    Sukačová K; Búzová D; Červený J
    Folia Microbiol (Praha); 2020 Oct; 65(5):901-908. PubMed ID: 32415567
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Carbon dioxide (CO
    Kassim MA; Meng TK
    Sci Total Environ; 2017 Apr; 584-585():1121-1129. PubMed ID: 28169025
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Potential of Monoraphidium minutum for carbon sequestration and lipid production in response to varying growth mode.
    Patidar SK; Mitra M; George B; Soundarya R; Mishra S
    Bioresour Technol; 2014 Nov; 172():32-40. PubMed ID: 25233474
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biomass and lipid production of heterotrophic microalgae Chlorella protothecoides by using biodiesel-derived crude glycerol.
    Chen YH; Walker TH
    Biotechnol Lett; 2011 Oct; 33(10):1973-83. PubMed ID: 21691839
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lipid production by a CO₂-tolerant green microalga, Chlorella sp. MRA-1.
    Zheng Y; Yuan C; Liu J; Hu G; Li F
    J Microbiol Biotechnol; 2014 May; 24(5):683-9. PubMed ID: 24572279
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Adaptability of oleaginous microalgae Chlorococcum alkaliphilus MC-1 cultivated with flue gas].
    Yang X; Xiang W; Zhang F; Wu H; He H; Fan J
    Sheng Wu Gong Cheng Xue Bao; 2013 Mar; 29(3):370-81. PubMed ID: 23789278
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.