These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 30972830)

  • 41. Metallophthalocyanine-Based Molecular Dipole Layer as a Universal and Versatile Approach to Realize Efficient and Stable Perovskite Solar Cells.
    Li F; Yuan J; Ling X; Huang L; Rujisamphan N; Li Y; Chi L; Ma W
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42397-42405. PubMed ID: 30422618
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [BMP]
    Xie H; Li L; Zhang J; Zhang Y; Pan Y; Xu J; Yin X; Que W
    Molecules; 2024 Mar; 29(7):. PubMed ID: 38611757
    [TBL] [Abstract][Full Text] [Related]  

  • 43. High efficiency MAPbI
    Yuan S; Wang J; Yang K; Wang P; Zhang X; Zhan Y; Zheng L
    Nanoscale; 2018 Oct; 10(40):18909-18914. PubMed ID: 30283942
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Revealing the interfacial properties of halide ions for efficient and stable flexible perovskite solar cells.
    Yi Z; Xiao B; Li X; Luo Y; Jiang Q; Yang J
    J Colloid Interface Sci; 2022 Dec; 628(Pt A):696-704. PubMed ID: 35944300
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Interfacial Molecular Doping of Metal Halide Perovskites for Highly Efficient Solar Cells.
    Jiang Q; Ni Z; Xu G; Lin Y; Rudd PN; Xue R; Li Y; Li Y; Gao Y; Huang J
    Adv Mater; 2020 Aug; 32(31):e2001581. PubMed ID: 32583905
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Poly(N,N'-bis-4-butylphenyl-N,N'-bisphenyl)benzidine-Based Interfacial Passivation Strategy Promoting Efficiency and Operational Stability of Perovskite Solar Cells in Regular Architecture.
    Akman E; Akin S
    Adv Mater; 2021 Jan; 33(2):e2006087. PubMed ID: 33289215
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Inorganic Perovskite Surface Reconfiguration for Stable Inverted Solar Cells with 20.38% Efficiency and Its Application in Tandem Devices.
    Wang S; Wang P; Shi B; Sun C; Sun H; Qi S; Huang Q; Xu S; Zhao Y; Zhang X
    Adv Mater; 2023 Jul; 35(28):e2300581. PubMed ID: 37052233
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Suppressing the Phase Segregation with Potassium for Highly Efficient and Photostable Inverted Wide-Band Gap Halide Perovskite Solar Cells.
    Liang J; Chen C; Hu X; Chen Z; Zheng X; Li J; Wang H; Ye F; Xiao M; Lu Z; Xu Y; Zhang S; Yu R; Tao C; Fang G
    ACS Appl Mater Interfaces; 2020 Oct; 12(43):48458-48466. PubMed ID: 33073991
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dopant-Free Small-Molecule Hole-Transporting Material for Inverted Perovskite Solar Cells with Efficiency Exceeding 21.
    Wang Y; Chen W; Wang L; Tu B; Chen T; Liu B; Yang K; Koh CW; Zhang X; Sun H; Chen G; Feng X; Woo HY; Djurišić AB; He Z; Guo X
    Adv Mater; 2019 Aug; 31(35):e1902781. PubMed ID: 31292989
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Polarized Ferroelectric Polymers for High-Performance Perovskite Solar Cells.
    Zhang CC; Wang ZK; Yuan S; Wang R; Li M; Jimoh MF; Liao LS; Yang Y
    Adv Mater; 2019 Jul; 31(30):e1902222. PubMed ID: 31165530
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Insight into the Interface Engineering of a SnO
    Wang Y; Mei X; Qiu J; Zhou Q; Jia D; Yu M; Liu J; Zhang X
    J Phys Chem Lett; 2021 Nov; 12(46):11330-11338. PubMed ID: 34780191
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enhanced Performance and Stability of TiO
    Zhuang Q; You G; Wang L; Lin X; Zou D; Zhen H; Ling Q
    ChemSusChem; 2019 Nov; 12(21):4824-4831. PubMed ID: 31496072
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Multifunctional Fullerene Derivative for Interface Engineering in Perovskite Solar Cells.
    Li Y; Zhao Y; Chen Q; Yang YM; Liu Y; Hong Z; Liu Z; Hsieh YT; Meng L; Li Y; Yang Y
    J Am Chem Soc; 2015 Dec; 137(49):15540-7. PubMed ID: 26592525
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Efficient and Stable All-Inorganic Niobium-Incorporated CsPbI
    Patil JV; Mali SS; Hong CK
    ACS Appl Mater Interfaces; 2020 Jun; 12(24):27176-27183. PubMed ID: 32484326
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Facile Hydrogen-Bonding Assisted Crystallization Modulation for Large-area High-quality CsPbI
    Li MH; Gong X; Wang S; Li L; Fu J; Wu J; Tan Z; Hu JS
    Angew Chem Int Ed Engl; 2024 Mar; 63(10):e202318591. PubMed ID: 38230583
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Perovskite solar cells with atomically coherent interlayers on SnO
    Min H; Lee DY; Kim J; Kim G; Lee KS; Kim J; Paik MJ; Kim YK; Kim KS; Kim MG; Shin TJ; Il Seok S
    Nature; 2021 Oct; 598(7881):444-450. PubMed ID: 34671136
    [TBL] [Abstract][Full Text] [Related]  

  • 57. How Do Surface Polar Molecules Contribute to High Open-Circuit Voltage in Perovskite Solar Cells?
    Ma Y; Zeng C; Zeng P; Hu Y; Li F; Zheng Z; Qin M; Lu X; Liu M
    Adv Sci (Weinh); 2023 Jun; 10(17):e2205072. PubMed ID: 37078797
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dual Surface Modifications of NiO
    Lin J; Wang Y; Khaleed A; Syed AA; He Y; Chan CCS; Li Y; Liu K; Li G; Wong KS; Popović J; Fan J; Ng AMC; Djurišić AB
    ACS Appl Mater Interfaces; 2023 May; 15(20):24437-24447. PubMed ID: 37150934
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dithieno[3,2-b:2',3'-d]pyrrole Cored p-Type Semiconductors Enabling 20 % Efficiency Dopant-Free Perovskite Solar Cells.
    Zhou J; Yin X; Dong Z; Ali A; Song Z; Shrestha N; Bista SS; Bao Q; Ellingson RJ; Yan Y; Tang W
    Angew Chem Int Ed Engl; 2019 Sep; 58(39):13717-13721. PubMed ID: 31286608
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Incorporating an Inert Polymer into the Interlayer Passivates Surface Defects in Methylammonium Lead Halide Perovskite Solar Cells.
    Bi S; Zhang X; Qin L; Wang R; Zhou J; Leng X; Qiu X; Zhang Y; Zhou H; Tang Z
    Chemistry; 2017 Oct; 23(58):14650-14657. PubMed ID: 28833717
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.