BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 30972877)

  • 1. Preferential utilization of inorganic polyphosphate over other bioavailable phosphorus sources by the model diatoms Thalassiosira spp.
    Diaz JM; Steffen R; Sanders JG; Tang Y; Duhamel S
    Environ Microbiol; 2019 Jul; 21(7):2415-2425. PubMed ID: 30972877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissolved organic phosphorus utilization by the marine bacterium Ruegeria pomeroyi DSS-3 reveals chain length-dependent polyphosphate degradation.
    Adams JC; Steffen R; Chou CW; Duhamel S; Diaz JM
    Environ Microbiol; 2022 May; 24(5):2259-2269. PubMed ID: 35102659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of phosphorus species and zinc stress on growth and physiology of the marine diatom Thalassiosira weissflogii.
    Jiao K; Yang H; Huang X; Liu F; Li S
    Chemosphere; 2023 Oct; 337():139308. PubMed ID: 37364640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptomic and physiological responses of Skeletonema costatum to ATP utilization.
    Zhang X; Lin S; Liu D
    Environ Microbiol; 2020 May; 22(5):1861-1869. PubMed ID: 32077205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extracellular carbohydrates released by the marine diatoms Cylindrotheca closterium, Thalassiosira pseudonana and Skeletonema costatum: effect of P-depletion and growth status.
    Urbani R; Magaletti E; Sist P; Cicero AM
    Sci Total Environ; 2005 Dec; 353(1-3):300-6. PubMed ID: 16223520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorus physiological ecology and molecular mechanisms in marine phytoplankton.
    Lin S; Litaker RW; Sunda WG
    J Phycol; 2016 Feb; 52(1):10-36. PubMed ID: 26987085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytate as a Phosphorus Nutrient with Impacts on Iron Stress-Related Gene Expression for Phytoplankton: Insights from the Diatom
    Li J; Zhang K; Lin X; Li L; Lin S
    Appl Environ Microbiol; 2022 Jan; 88(2):e0209721. PubMed ID: 34757820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorus supply drives rapid turnover of membrane phospholipids in the diatom Thalassiosira pseudonana.
    Martin P; Van Mooy BA; Heithoff A; Dyhrman ST
    ISME J; 2011 Jun; 5(6):1057-60. PubMed ID: 21160536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipidomics of Thalassiosira pseudonana under Phosphorus Stress Reveal Underlying Phospholipid Substitution Dynamics and Novel Diglycosylceramide Substitutes.
    Hunter JE; Brandsma J; Dymond MK; Koster G; Moore CM; Postle AD; Mills RA; Attard GS
    Appl Environ Microbiol; 2018 Mar; 84(6):. PubMed ID: 29305510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The transcriptome and proteome of the diatom Thalassiosira pseudonana reveal a diverse phosphorus stress response.
    Dyhrman ST; Jenkins BD; Rynearson TA; Saito MA; Mercier ML; Alexander H; Whitney LP; Drzewianowski A; Bulygin VV; Bertrand EM; Wu Z; Benitez-Nelson C; Heithoff A
    PLoS One; 2012; 7(3):e33768. PubMed ID: 22479440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects and mechanisms of glyphosate as phosphorus nutrient on element stoichiometry and metabolism in the diatom
    Wang C; Li J; Li S; Lin S
    Appl Environ Microbiol; 2024 Feb; 90(2):e0213123. PubMed ID: 38265214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Novel Ca
    Helliwell KE; Harrison EL; Christie-Oleza JA; Rees AP; Kleiner FH; Gaikwad T; Downe J; Aguilo-Ferretjans MM; Al-Moosawi L; Brownlee C; Wheeler GL
    Curr Biol; 2021 Mar; 31(5):978-989.e4. PubMed ID: 33373640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptomic response of the harmful algae Heterosigma akashiwo to polyphosphate utilization and phosphate stress.
    Ji N; Wang J; Zhang Z; Chen L; Xu M; Yin X; Shen X
    Harmful Algae; 2022 Aug; 117():102267. PubMed ID: 35944950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological responses of the diatoms Thalassiosira weissflogii and Thalassiosira pseudonana to nitrogen starvation and high light.
    Qiao H; Zang S; Yan F; Xu Z; Wang L; Wu H
    Mar Environ Res; 2021 Apr; 166():105276. PubMed ID: 33578138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phytoplankton community structure and environmental parameters in aquaculture areas of Daya Bay, South China Sea.
    Wang Z; Zhao J; Zhang Y; Cao Y
    J Environ Sci (China); 2009; 21(9):1268-75. PubMed ID: 19999976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unicellular C4 photosynthesis in a marine diatom.
    Reinfelder JR; Kraepiel AM; Morel FM
    Nature; 2000 Oct; 407(6807):996-9. PubMed ID: 11069177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effects of different phosphorus substrates on the growth and phosphatase activity of Skeletonema costatum and Prorocentrum donghaiense].
    Zhao YF; Yu ZM; Song XX; Cao XH
    Huan Jing Ke Xue; 2009 Mar; 30(3):693-9. PubMed ID: 19432314
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Interrelationship of polyphosphate metabolism and levorin biosynthesis in Streptomyces levoris].
    Ziuzina ML; Kulaev IS; Bobyk MA; Efimova TP; Tereshin IM
    Biokhimiia; 1981 May; 46(5):782-8. PubMed ID: 6271258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissolved Organic Phosphorus Production during Simulated Phytoplankton Blooms in a Coastal Upwelling System.
    Ruttenberg KC; Dyhrman ST
    Front Microbiol; 2012; 3():274. PubMed ID: 22888326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of nitrate enrichment and diatoms on the bioavailability of Fe(III) oxyhydroxide colloids in seawater.
    Liu FJ; Huang BQ; Li SX; Zheng FY; Huang XG
    Chemosphere; 2016 Mar; 147():105-13. PubMed ID: 26766021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.