These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 30972938)

  • 1. Phosphate-limited ocean regions select for bacterial populations enriched in the carbon-phosphorus lyase pathway for phosphonate degradation.
    Sosa OA; Repeta DJ; DeLong EF; Ashkezari MD; Karl DM
    Environ Microbiol; 2019 Jul; 21(7):2402-2414. PubMed ID: 30972938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methylphosphonic Acid Biosynthesis and Catabolism in Pelagic Archaea and Bacteria.
    Ulrich EC; Kamat SS; Hove-Jensen B; Zechel DL
    Methods Enzymol; 2018; 605():351-426. PubMed ID: 29909833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methylphosphonate Oxidation in
    Sosa OA; Casey JR; Karl DM
    Appl Environ Microbiol; 2019 Jul; 85(13):. PubMed ID: 31028025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Basin-scale patterns in the abundance of SAR11 subclades, marine Actinobacteria (OM1), members of the Roseobacter clade and OCS116 in the South Atlantic.
    Morris RM; Frazar CD; Carlson CA
    Environ Microbiol; 2012 May; 14(5):1133-44. PubMed ID: 22225975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Abc of Phosphonate Breakdown: A Mechanism for Bacterial Survival.
    Manav MC; Sofos N; Hove-Jensen B; Brodersen DE
    Bioessays; 2018 Nov; 40(11):e1800091. PubMed ID: 30198068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Mechanisms of Phosphate Sensing, Transport and Signalling in Streptomyces and Related Actinobacteria.
    Martín JF; Liras P
    Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33498785
    [No Abstract]   [Full Text] [Related]  

  • 7. The enzymatic conversion of phosphonates to phosphate by bacteria.
    Kamat SS; Raushel FM
    Curr Opin Chem Biol; 2013 Aug; 17(4):589-96. PubMed ID: 23830682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metagenomes Reveal Global Distribution of Bacterial Steroid Catabolism in Natural, Engineered, and Host Environments.
    Holert J; Cardenas E; Bergstrand LH; Zaikova E; Hahn AS; Hallam SJ; Mohn WW
    mBio; 2018 Jan; 9(1):. PubMed ID: 29382738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphonate utilization by the globally important marine diazotroph Trichodesmium.
    Dyhrman ST; Chappell PD; Haley ST; Moffett JW; Orchard ED; Waterbury JB; Webb EA
    Nature; 2006 Jan; 439(7072):68-71. PubMed ID: 16397497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Abundance and distribution of dimethylsulfoniopropionate degradation genes and the corresponding bacterial community structure at dimethyl sulfide hot spots in the tropical and subtropical pacific ocean.
    Cui Y; Suzuki S; Omori Y; Wong SK; Ijichi M; Kaneko R; Kameyama S; Tanimoto H; Hamasaki K
    Appl Environ Microbiol; 2015 Jun; 81(12):4184-94. PubMed ID: 25862229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global and seasonal variation of marine phosphonate metabolism.
    Lockwood S; Greening C; Baltar F; Morales SE
    ISME J; 2022 Sep; 16(9):2198-2212. PubMed ID: 35739297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Utilization of glyphosate as phosphate source: biochemistry and genetics of bacterial carbon-phosphorus lyase.
    Hove-Jensen B; Zechel DL; Jochimsen B
    Microbiol Mol Biol Rev; 2014 Mar; 78(1):176-97. PubMed ID: 24600043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methylphosphonate-driven methane formation and its link to primary production in the oligotrophic North Atlantic.
    von Arx JN; Kidane AT; Philippi M; Mohr W; Lavik G; Schorn S; Kuypers MMM; Milucka J
    Nat Commun; 2023 Oct; 14(1):6529. PubMed ID: 37845220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphate depletion in the western North Atlantic Ocean.
    Wu J; Sunda W; Boyle EA; Karl DM
    Science; 2000 Aug; 289(5480):759-62. PubMed ID: 10926534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and Characterization of Bacteria That Degrade Phosphonates in Marine Dissolved Organic Matter.
    Sosa OA; Repeta DJ; Ferrón S; Bryant JA; Mende DR; Karl DM; DeLong EF
    Front Microbiol; 2017; 8():1786. PubMed ID: 29085339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of the phosphate regulon and the psiD locus in carbon-phosphorus lyase activity of Escherichia coli K-12.
    Wackett LP; Wanner BL; Venditti CP; Walsh CT
    J Bacteriol; 1987 Apr; 169(4):1753-6. PubMed ID: 3549702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The chemolithoautotroph Acidithiobacillus ferrooxidans can survive under phosphate-limiting conditions by expressing a C-P lyase operon that allows it to grow on phosphonates.
    Vera M; Pagliai F; Guiliani N; Jerez CA
    Appl Environ Microbiol; 2008 Mar; 74(6):1829-35. PubMed ID: 18203861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Abundance and diversity of heterotrophic bacterial cells assimilating phosphate in the subtropical North Atlantic Ocean.
    Longnecker K; Lomas MW; Van Mooy BA
    Environ Microbiol; 2010 Oct; 12(10):2773-82. PubMed ID: 20545744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Microbial Degradation of Natural and Anthropogenic Phosphonates.
    Ruffolo F; Dinhof T; Murray L; Zangelmi E; Chin JP; Pallitsch K; Peracchi A
    Molecules; 2023 Sep; 28(19):. PubMed ID: 37836707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diversity of Dimethylsulfoniopropionate Degradation Genes Reveals the Significance of Marine Roseobacter Clade in Sulfur Metabolism in Coastal Areas of Antarctic Maxwell Bay.
    Zeng YX; Qiao ZY
    Curr Microbiol; 2019 Sep; 76(9):967-974. PubMed ID: 31134298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.