BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 30972939)

  • 1. Testing the ability of unmanned aerial systems and machine learning to map weeds at subfield scales: a test with the weed Alopecurus myosuroides (Huds).
    Lambert JP; Childs DZ; Freckleton RP
    Pest Manag Sci; 2019 Aug; 75(8):2283-2294. PubMed ID: 30972939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluating the potential of Unmanned Aerial Systems for mapping weeds at field scales: a case study with
    Lambert JPT; Hicks HL; Childs DZ; Freckleton RP
    Weed Res; 2018 Feb; 58(1):35-45. PubMed ID: 29527066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measuring the effectiveness of management interventions at regional scales by integrating ecological monitoring and modelling.
    Freckleton RP; Hicks HL; Comont D; Crook L; Hull R; Neve P; Childs DZ
    Pest Manag Sci; 2018 Oct; 74(10):2287-2295. PubMed ID: 29024368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The implications of spatially variable pre-emergence herbicide efficacy for weed management.
    Metcalfe H; Milne AE; Hull R; Murdoch AJ; Storkey J
    Pest Manag Sci; 2018 Mar; 74(3):755-765. PubMed ID: 29095563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integration of remote-weed mapping and an autonomous spraying unmanned aerial vehicle for site-specific weed management.
    Hunter JE; Gannon TW; Richardson RJ; Yelverton FH; Leon RG
    Pest Manag Sci; 2020 Apr; 76(4):1386-1392. PubMed ID: 31622004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unmanned Aerial System-Based Weed Mapping in Sod Production Using a Convolutional Neural Network.
    Zhang J; Maleski J; Jespersen D; Waltz FC; Rains G; Schwartz B
    Front Plant Sci; 2021; 12():702626. PubMed ID: 34899768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Weed mapping in early-season maize fields using object-based analysis of unmanned aerial vehicle (UAV) images.
    Peña JM; Torres-Sánchez J; de Castro AI; Kelly M; López-Granados F
    PLoS One; 2013; 8(10):e77151. PubMed ID: 24146963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of broadleaf weeds growing in turfgrass with convolutional neural networks.
    Yu J; Sharpe SM; Schumann AW; Boyd NS
    Pest Manag Sci; 2019 Aug; 75(8):2211-2218. PubMed ID: 30672096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterizing the environmental drivers of the abundance and distribution of Alopecurus myosuroides on a national scale.
    Hicks H; Lambert J; Pywell R; Hulmes L; Hulmes S; Walker K; Childs DZ; Freckleton RP
    Pest Manag Sci; 2021 Jun; 77(6):2726-2736. PubMed ID: 33496990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved weed mapping in corn fields by combining UAV-based spectral, textural, structural, and thermal measurements.
    Xu B; Meng R; Chen G; Liang L; Lv Z; Zhou L; Sun R; Zhao F; Yang W
    Pest Manag Sci; 2023 Jul; 79(7):2591-2602. PubMed ID: 36883563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A fully convolutional network for weed mapping of unmanned aerial vehicle (UAV) imagery.
    Huang H; Deng J; Lan Y; Yang A; Deng X; Zhang L
    PLoS One; 2018; 13(4):e0196302. PubMed ID: 29698500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic of black-grass populations depending on the sowing time of winter wheat.
    Vandersteen J; Jaunard D; Mahy G; Bizoux JP; Monty A; De Proft M; Henriet F; Vancutsem F; Bodson B
    Commun Agric Appl Biol Sci; 2011; 76(3):485-90. PubMed ID: 22696956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and Comprehensive Evaluation of Resistant Weeds Using Unmanned Aerial Vehicle-Based Multispectral Imagery.
    Xia F; Quan L; Lou Z; Sun D; Li H; Lv X
    Front Plant Sci; 2022; 13():938604. PubMed ID: 35937335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of Ecballium elaterium in hedgerow olive orchards using a low-cost uncrewed aerial vehicle and open-source algorithms.
    Torres-Sánchez J; Mesas-Carrascosa FJ; Pérez-Porras F; López-Granados F
    Pest Manag Sci; 2023 Feb; 79(2):645-654. PubMed ID: 36223137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The factors driving evolved herbicide resistance at a national scale.
    Hicks HL; Comont D; Coutts SR; Crook L; Hull R; Norris K; Neve P; Childs DZ; Freckleton RP
    Nat Ecol Evol; 2018 Mar; 2(3):529-536. PubMed ID: 29434350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial Quality Evaluation of Resampled Unmanned Aerial Vehicle-Imagery for Weed Mapping.
    Borra-Serrano I; Peña JM; Torres-Sánchez J; Mesas-Carrascosa FJ; López-Granados F
    Sensors (Basel); 2015 Aug; 15(8):19688-708. PubMed ID: 26274960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recognition pest by image-based transfer learning.
    Dawei W; Limiao D; Jiangong N; Jiyue G; Hongfei Z; Zhongzhi H
    J Sci Food Agric; 2019 Aug; 99(10):4524-4531. PubMed ID: 30868598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantifying efficacy and limits of unmanned aerial vehicle (UAV) technology for weed seedling detection as affected by sensor resolution.
    Peña JM; Torres-Sánchez J; Serrano-Pérez A; de Castro AI; López-Granados F
    Sensors (Basel); 2015 Mar; 15(3):5609-26. PubMed ID: 25756867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Does selective hormesis impact herbicide resistance evolution in weeds? ACCase-resistant populations of Alopecurus myosuroides Huds. as a case study.
    Belz RG; Farooq MB; Wagner J
    Pest Manag Sci; 2018 Aug; 74(8):1880-1891. PubMed ID: 29446872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of synthetic images for training a deep learning model for weed detection and biomass estimation in cotton.
    Sapkota BB; Popescu S; Rajan N; Leon RG; Reberg-Horton C; Mirsky S; Bagavathiannan MV
    Sci Rep; 2022 Nov; 12(1):19580. PubMed ID: 36379963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.