These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 30972944)

  • 1. Recent Progress in Three-Terminal Artificial Synapses: From Device to System.
    Han H; Yu H; Wei H; Gong J; Xu W
    Small; 2019 Aug; 15(32):e1900695. PubMed ID: 30972944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organic Synapses for Neuromorphic Electronics: From Brain-Inspired Computing to Sensorimotor Nervetronics.
    Lee Y; Lee TW
    Acc Chem Res; 2019 Apr; 52(4):964-974. PubMed ID: 30896916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible Neuromorphic Electronics for Computing, Soft Robotics, and Neuroprosthetics.
    Park HL; Lee Y; Kim N; Seo DG; Go GT; Lee TW
    Adv Mater; 2020 Apr; 32(15):e1903558. PubMed ID: 31559670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stretchable Transistor-Structured Artificial Synapses for Neuromorphic Electronics.
    Wang X; Yang H; Li E; Cao C; Zheng W; Chen H; Li W
    Small; 2023 May; 19(18):e2205395. PubMed ID: 36748849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of Bio-Inspired Artificial Synapses: Materials, Structures, and Mechanisms.
    Yu H; Wei H; Gong J; Han H; Ma M; Wang Y; Xu W
    Small; 2021 Mar; 17(9):e2000041. PubMed ID: 32452636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stimuli-Enabled Artificial Synapses for Neuromorphic Perception: Progress and Perspectives.
    Pan X; Jin T; Gao J; Han C; Shi Y; Chen W
    Small; 2020 Aug; 16(34):e2001504. PubMed ID: 32734644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial Synaptic Devices Based on Natural Chicken Albumen Coupled Electric-Double-Layer Transistors.
    Wu G; Feng P; Wan X; Zhu L; Shi Y; Wan Q
    Sci Rep; 2016 Mar; 6():23578. PubMed ID: 27008981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flexible Artificial Sensory Systems Based on Neuromorphic Devices.
    Sun F; Lu Q; Feng S; Zhang T
    ACS Nano; 2021 Mar; 15(3):3875-3899. PubMed ID: 33507725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supported Lipid Bilayers Coupled to Organic Neuromorphic Devices Modulate Short-Term Plasticity in Biomimetic Synapses.
    Lubrano C; Bruno U; Ausilio C; Santoro F
    Adv Mater; 2022 Apr; 34(15):e2110194. PubMed ID: 35174916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organic core-sheath nanowire artificial synapses with femtojoule energy consumption.
    Xu W; Min SY; Hwang H; Lee TW
    Sci Adv; 2016 Jun; 2(6):e1501326. PubMed ID: 27386556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activity-dependent synaptic plasticity of a chalcogenide electronic synapse for neuromorphic systems.
    Li Y; Zhong Y; Zhang J; Xu L; Wang Q; Sun H; Tong H; Cheng X; Miao X
    Sci Rep; 2014 May; 4():4906. PubMed ID: 24809396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Environment-Adaptable Artificial Visual Perception Behaviors Using a Light-Adjustable Optoelectronic Neuromorphic Device Array.
    Kwon SM; Cho SW; Kim M; Heo JS; Kim YH; Park SK
    Adv Mater; 2019 Dec; 31(52):e1906433. PubMed ID: 31725185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent progress in three-terminal artificial synapses based on 2D materials: from mechanisms to applications.
    Zhang F; Li C; Li Z; Dong L; Zhao J
    Microsyst Nanoeng; 2023; 9():16. PubMed ID: 36817330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On-chip photonic synapse.
    Cheng Z; Ríos C; Pernice WHP; Wright CD; Bhaskaran H
    Sci Adv; 2017 Sep; 3(9):e1700160. PubMed ID: 28959725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Progress on Neuromorphic Synapse Electronics: From Emerging Materials, Devices, to Neural Networks.
    Zhao Y; Jiang J
    J Nanosci Nanotechnol; 2018 Dec; 18(12):8003-8015. PubMed ID: 30189917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A MoS
    Wang S; Chen C; Yu Z; He Y; Chen X; Wan Q; Shi Y; Zhang DW; Zhou H; Wang X; Zhou P
    Adv Mater; 2019 Jan; 31(3):e1806227. PubMed ID: 30485567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synaptic Transistor Capable of Accelerated Learning Induced by Temperature-Facilitated Modulation of Synaptic Plasticity.
    Li E; Lin W; Yan Y; Yang H; Wang X; Chen Q; Lv D; Chen G; Chen H; Guo T
    ACS Appl Mater Interfaces; 2019 Dec; 11(49):46008-46016. PubMed ID: 31724851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emulation of Synaptic Plasticity on a Cobalt-Based Synaptic Transistor for Neuromorphic Computing.
    Monalisha P; Kumar APS; Wang XR; Piramanayagam SN
    ACS Appl Mater Interfaces; 2022 Mar; 14(9):11864-11872. PubMed ID: 35229606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synaptic transistors with aluminum oxide dielectrics enabling full audio frequency range signal processing.
    Bolat S; Torres Sevilla G; Mancinelli A; Gilshtein E; Sastre J; Cabas Vidani A; Bachmann D; Shorubalko I; Briand D; Tiwari AN; Romanyuk YE
    Sci Rep; 2020 Oct; 10(1):16664. PubMed ID: 33028862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-dimensional materials for synaptic electronics and neuromorphic systems.
    Wang S; Zhang DW; Zhou P
    Sci Bull (Beijing); 2019 Aug; 64(15):1056-1066. PubMed ID: 36659765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.