These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 30973140)

  • 21. How ticks keep ticking in the adversity of host immune reactions.
    Jennings R; Kuang Y; Thieme HR; Wu J; Wu X
    J Math Biol; 2019 Apr; 78(5):1331-1364. PubMed ID: 30478760
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of the tick-pathogen interface by quantitative proteomics.
    Villar M; Popara M; Bonzón-Kulichenko E; Ayllón N; Vázquez J; de la Fuente J
    Ticks Tick Borne Dis; 2012 Jun; 3(3):154-8. PubMed ID: 22647712
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tick innate immunity.
    Kopácek P; Hajdusek O; Buresová V; Daffre S
    Adv Exp Med Biol; 2010; 708():137-62. PubMed ID: 21528697
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Editorial: Tick-Host-Pathogen Interactions.
    Bonnet SI; Nijhof AM; de la Fuente J
    Front Cell Infect Microbiol; 2018; 8():194. PubMed ID: 29963500
    [No Abstract]   [Full Text] [Related]  

  • 25. Interaction of primary mast cells with Borrelia burgdorferi (sensu stricto): role in transmission and dissemination in C57BL/6 mice.
    Bernard Q; Wang Z; Di Nardo A; Boulanger N
    Parasit Vectors; 2017 Jun; 10(1):313. PubMed ID: 28655322
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Serine Protease Inhibitors in Ticks: An Overview of Their Role in Tick Biology and Tick-Borne Pathogen Transmission.
    Blisnick AA; Foulon T; Bonnet SI
    Front Cell Infect Microbiol; 2017; 7():199. PubMed ID: 28589099
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Immunomodulators in tick saliva and their benefits.
    Stibrániová I; Lahová M; Bartíková P
    Acta Virol; 2013; 57(2):200-16. PubMed ID: 23600877
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exposed and concealed antigens as vaccine targets for controlling ticks and tick-borne diseases.
    Nuttall PA; Trimnell AR; Kazimirova M; Labuda M
    Parasite Immunol; 2006 Apr; 28(4):155-63. PubMed ID: 16542317
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An in vitro model to assess the immunosuppressive effect of tick saliva on the mobilization of inflammatory monocyte-derived cells.
    Vachiery N; Puech C; Cavelier P; Rodrigues V; Aprelon R; Lefrançois T; Martinez D; Epardaud M
    Vet Res; 2015 Sep; 46():117. PubMed ID: 26412247
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tick Saliva Enhances Powassan Virus Transmission to the Host, Influencing Its Dissemination and the Course of Disease.
    Hermance ME; Thangamani S
    J Virol; 2015 Aug; 89(15):7852-60. PubMed ID: 25995246
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ticks and tick-borne pathogens at the cutaneous interface: host defenses, tick countermeasures, and a suitable environment for pathogen establishment.
    Wikel S
    Front Microbiol; 2013 Nov; 4():337. PubMed ID: 24312085
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tick Salivary Compounds for Targeted Immunomodulatory Therapy.
    Aounallah H; Bensaoud C; M'ghirbi Y; Faria F; Chmelar JI; Kotsyfakis M
    Front Immunol; 2020; 11():583845. PubMed ID: 33072132
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Tick-host interactions].
    Buczek A; Bartosik K
    Przegl Epidemiol; 2006; 60 Suppl 1():28-33. PubMed ID: 16909772
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Tick Microbiome: Why Non-pathogenic Microorganisms Matter in Tick Biology and Pathogen Transmission.
    Bonnet SI; Binetruy F; Hernández-Jarguín AM; Duron O
    Front Cell Infect Microbiol; 2017; 7():236. PubMed ID: 28642842
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tick modulation of host immunity: an important factor in pathogen transmission.
    Wikel SK
    Int J Parasitol; 1999 Jun; 29(6):851-9. PubMed ID: 10480722
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Skin and arthropods: an effective interaction used by pathogens in vector-borne diseases.
    Bernard Q; Jaulhac B; Boulanger N
    Eur J Dermatol; 2015 Apr; 25 Suppl 1():18-22. PubMed ID: 26083670
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adaptations of arboviruses to ticks.
    Nuttall PA; Jones LD; Labuda M; Kaufman WR
    J Med Entomol; 1994 Jan; 31(1):1-9. PubMed ID: 8158611
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tick host immunity: vector immunomodulation and acquired tick resistance.
    Kitsou C; Fikrig E; Pal U
    Trends Immunol; 2021 Jul; 42(7):554-574. PubMed ID: 34074602
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exploring tick saliva: from biochemistry to 'sialomes' and functional genomics.
    Valenzuela JG
    Parasitology; 2004; 129 Suppl():S83-94. PubMed ID: 15938506
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Vector-host interactions in disease transmission.
    Nuttall PA; Paesen GC; Lawrie CH; Wang H
    J Mol Microbiol Biotechnol; 2000 Oct; 2(4):381-6. PubMed ID: 11075909
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.