These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 30973217)

  • 1. Anderson Localization for Better Thermoelectrics?
    Tian Z
    ACS Nano; 2019 Apr; 13(4):3750-3753. PubMed ID: 30973217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Record-High Thermoelectric Performance in Al-Doped ZnO via Anderson Localization of Band Edge States.
    Serhiienko I; Novitskii A; Garmroudi F; Kolesnikov E; Chernyshova E; Sviridova T; Bogach A; Voronin A; Nguyen HD; Kawamoto N; Bauer E; Khovaylo V; Mori T
    Adv Sci (Weinh); 2024 Jul; 11(26):e2309291. PubMed ID: 38704699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergetic Enhancement of Thermoelectric Performance by Selective Charge Anderson Localization-Delocalization Transition in n-Type Bi-Doped PbTe/Ag
    Lee MH; Yun JH; Kim G; Lee JE; Park SD; Reith H; Schierning G; Nielsch K; Ko W; Li AP; Rhyee JS
    ACS Nano; 2019 Apr; 13(4):3806-3815. PubMed ID: 30735348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Will organic thermoelectrics get hot?
    Campoy-Quiles M
    Philos Trans A Math Phys Eng Sci; 2019 Aug; 377(2152):20180352. PubMed ID: 31280716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anderson transition in stoichiometric Fe
    Garmroudi F; Parzer M; Riss A; Ruban AV; Khmelevskyi S; Reticcioli M; Knopf M; Michor H; Pustogow A; Mori T; Bauer E
    Nat Commun; 2022 Jun; 13(1):3599. PubMed ID: 35739099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems.
    Bell LE
    Science; 2008 Sep; 321(5895):1457-61. PubMed ID: 18787160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vacancy-induced dislocations within grains for high-performance PbSe thermoelectrics.
    Chen Z; Ge B; Li W; Lin S; Shen J; Chang Y; Hanus R; Snyder GJ; Pei Y
    Nat Commun; 2017 Jan; 8():13828. PubMed ID: 28051063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanowire-based thermoelectrics.
    Ali A; Chen Y; Vasiraju V; Vaddiraju S
    Nanotechnology; 2017 Jul; 28(28):282001. PubMed ID: 28627500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Absence of Nanostructuring in NaPb
    Slade TJ; Grovogui JA; Hao S; Bailey TP; Ma R; Hua X; Guéguen A; Uher C; Wolverton C; Dravid VP; Kanatzidis MG
    J Am Chem Soc; 2018 Jun; 140(22):7021-7031. PubMed ID: 29799729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoscale self-assembly of thermoelectric materials: a review of chemistry-based approaches.
    Yazdani S; Pettes MT
    Nanotechnology; 2018 Oct; 29(43):432001. PubMed ID: 30052199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel Principles and Nanostructuring Methods for Enhanced Thermoelectrics.
    Mori T
    Small; 2017 Dec; 13(45):. PubMed ID: 28961360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Concerted Rattling in CsAg5 Te3 Leading to Ultralow Thermal Conductivity and High Thermoelectric Performance.
    Lin H; Tan G; Shen JN; Hao S; Wu LM; Calta N; Malliakas C; Wang S; Uher C; Wolverton C; Kanatzidis MG
    Angew Chem Int Ed Engl; 2016 Sep; 55(38):11431-6. PubMed ID: 27513458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Boundary Engineering for the Thermoelectric Performance of Bulk Alloys Based on Bismuth Telluride.
    Mun H; Choi SM; Lee KH; Kim SW
    ChemSusChem; 2015 Jul; 8(14):2312-26. PubMed ID: 25782971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-Assembled Three-Dimensional Bi
    Thongkham W; Lertsatitthanakorn C; Jiramitmongkon K; Tantisantisom K; Boonkoom T; Jitpukdee M; Sinthiptharakoon K; Klamchuen A; Liangruksa M; Khanchaitit P
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):6624-6633. PubMed ID: 30656940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anisotropic thermoelectric properties of layered compounds in SnX2 (X = S, Se): a promising thermoelectric material.
    Sun BZ; Ma Z; He C; Wu K
    Phys Chem Chem Phys; 2015 Nov; 17(44):29844-53. PubMed ID: 26486877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fracture structure and thermoelectric enhancement of Cu
    Ballikaya S; Sertkol M; Oner Y; Bailey TP; Uher C
    Phys Chem Chem Phys; 2019 Jun; 21(25):13569-13577. PubMed ID: 31134973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tellurium as a high-performance elemental thermoelectric.
    Lin S; Li W; Chen Z; Shen J; Ge B; Pei Y
    Nat Commun; 2016 Jan; 7():10287. PubMed ID: 26751919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The journey of tin chalcogenides towards high-performance thermoelectrics and topological materials.
    Banik A; Roychowdhury S; Biswas K
    Chem Commun (Camb); 2018 Jun; 54(50):6573-6590. PubMed ID: 29749410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tuning of the Seebeck Coefficient and the Electrical and Thermal Conductivity of Hybrid Materials Based on Polypyrrole and Bismuth Nanowires.
    Hnida KE; Pilarczyk K; Knutelski M; Marzec M; Gajewska M; Kosonowski A; Chlebda D; Lis B; Przybylski M
    Chemphyschem; 2018 Jul; 19(13):1617-1626. PubMed ID: 29633465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Paper Thermoelectrics: Merging Nanotechnology with Naturally Abundant Fibrous Material.
    Sun C; Goharpey AH; Rai A; Zhang T; Ko DK
    ACS Appl Mater Interfaces; 2016 Aug; 8(34):22182-9. PubMed ID: 27505304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.