These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Differential expression of major genes involved in the biosynthesis of aliphatic glucosinolates in intergeneric Baemoochae (Brassicaceae) and its parents during development. Nugroho ABD; Han N; Pervitasari AN; Kim DH; Kim J Plant Mol Biol; 2020 Jan; 102(1-2):171-184. PubMed ID: 31792713 [TBL] [Abstract][Full Text] [Related]
23. Novel bioresources for studies of Brassica oleracea: identification of a kale MYB transcription factor responsible for glucosinolate production. Araki R; Hasumi A; Nishizawa OI; Sasaki K; Kuwahara A; Sawada Y; Totoki Y; Toyoda A; Sakaki Y; Li Y; Saito K; Ogawa T; Hirai MY Plant Biotechnol J; 2013 Oct; 11(8):1017-27. PubMed ID: 23910994 [TBL] [Abstract][Full Text] [Related]
24. Glucosinolate Profiling and Expression Analysis of Glucosinolate Biosynthesis Genes Differentiate White Mold Resistant and Susceptible Cabbage Lines. Abuyusuf M; Robin AHK; Lee JH; Jung HJ; Kim HT; Park JI; Nou IS Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30551645 [TBL] [Abstract][Full Text] [Related]
25. Examining the transcriptional response of overexpressing anthranilate synthase in the hairy roots of an important medicinal plant Catharanthus roseus by RNA-seq. Sun J; Manmathan H; Sun C; Peebles CA BMC Plant Biol; 2016 May; 16(1):108. PubMed ID: 27154243 [TBL] [Abstract][Full Text] [Related]
26. [Culture of transgenic Glycyrrhiza uralensis hairy root with licorice squalene synthase (SQS) gene]. Lu H; Liu J; Zhang H; Gao S Zhongguo Zhong Yao Za Zhi; 2009 Aug; 34(15):1890-3. PubMed ID: 19894527 [TBL] [Abstract][Full Text] [Related]
27. Influence of nitrogen and sulfur on biomass production and carotenoid and glucosinolate concentrations in watercress (Nasturtium officinale R. Br.). Kopsell DA; Barickman TC; Sams CE; McElroy JS J Agric Food Chem; 2007 Dec; 55(26):10628-34. PubMed ID: 18052091 [TBL] [Abstract][Full Text] [Related]
28. An protocol for genetic transformation of Catharanthus roseus by Agrobacterium rhizogenes A4. Zhou ML; Zhu XM; Shao JR; Wu YM; Tang YX Appl Biochem Biotechnol; 2012 Apr; 166(7):1674-84. PubMed ID: 22328251 [TBL] [Abstract][Full Text] [Related]
29. Functional analysis of three BrMYB28 transcription factors controlling the biosynthesis of glucosinolates in Brassica rapa. Seo MS; Jin M; Chun JH; Kim SJ; Park BS; Shon SH; Kim JS Plant Mol Biol; 2016 Mar; 90(4-5):503-16. PubMed ID: 26820138 [TBL] [Abstract][Full Text] [Related]
30. Influence of silver nanoparticles on the enhancement and transcriptional changes of glucosinolates and phenolic compounds in genetically transformed root cultures of Brassica rapa ssp. rapa. Chung IM; Rekha K; Rajakumar G; Thiruvengadam M Bioprocess Biosyst Eng; 2018 Nov; 41(11):1665-1677. PubMed ID: 30056602 [TBL] [Abstract][Full Text] [Related]
31. A systems biology approach identifies a R2R3 MYB gene subfamily with distinct and overlapping functions in regulation of aliphatic glucosinolates. Sønderby IE; Hansen BG; Bjarnholt N; Ticconi C; Halkier BA; Kliebenstein DJ PLoS One; 2007 Dec; 2(12):e1322. PubMed ID: 18094747 [TBL] [Abstract][Full Text] [Related]
32. Metabolic Engineering of Glycyrrhizin Pathway by Over-Expression of Beta-amyrin 11-Oxidase in Transgenic Roots of Glycyrrhiza glabra. Shirazi Z; Aalami A; Tohidfar M; Sohani MM Mol Biotechnol; 2018 Jun; 60(6):412-419. PubMed ID: 29687371 [TBL] [Abstract][Full Text] [Related]
33. Exogenous Methyl Jasmonate and Salicylic Acid Induce Subspecies-Specific Patterns of Glucosinolate Accumulation and Gene Expression in Brassica oleracea L. Yi GE; Robin AH; Yang K; Park JI; Hwang BH; Nou IS Molecules; 2016 Oct; 21(10):. PubMed ID: 27783045 [TBL] [Abstract][Full Text] [Related]
34. Increased Glucosinolate Production in Brassica oleracea var. italica Cell Cultures Due to Coronatine Activated Genes Involved in Glucosinolate Biosynthesis. Sánchez-Pujante PJ; Sabater-Jara AB; Belchí-Navarro S; Pedreño MA; Almagro L J Agric Food Chem; 2019 Jan; 67(1):102-111. PubMed ID: 30566344 [TBL] [Abstract][Full Text] [Related]
35. Production of hairy root cultures and transgenic plants by Agrobacterium rhizogenes-mediated transformation. Christey MC; Braun RH Methods Mol Biol; 2005; 286():47-60. PubMed ID: 15310912 [TBL] [Abstract][Full Text] [Related]
36. Effects of phytohormones and jasmonic acid on glucosinolate content in hairy root cultures of Sinapis alba and Brassica rapa. Kastell A; Smetanska I; Ulrichs C; Cai Z; Mewis I Appl Biochem Biotechnol; 2013 Jan; 169(2):624-35. PubMed ID: 23269631 [TBL] [Abstract][Full Text] [Related]
37. The Glucosinolate Biosynthetic Gene AOP2 Mediates Feed-back Regulation of Jasmonic Acid Signaling in Arabidopsis. Burow M; Atwell S; Francisco M; Kerwin RE; Halkier BA; Kliebenstein DJ Mol Plant; 2015 Aug; 8(8):1201-12. PubMed ID: 25758208 [TBL] [Abstract][Full Text] [Related]
38. TrMYB4 transcription factor regulates the rutin biosynthesis in hairy roots of F. cymosum. Luo Q; Li J; Wang C; Cheng C; Shao J; Hui J; Zeng Y; Wang J; Zhu X; Xu Y Plant Sci; 2020 May; 294():110440. PubMed ID: 32234223 [TBL] [Abstract][Full Text] [Related]
39. Four genes encoding MYB28, a major transcriptional regulator of the aliphatic glucosinolate pathway, are differentially expressed in the allopolyploid Brassica juncea. Augustine R; Majee M; Gershenzon J; Bisht NC J Exp Bot; 2013 Nov; 64(16):4907-21. PubMed ID: 24043856 [TBL] [Abstract][Full Text] [Related]
40. Metabolic engineering of aliphatic glucosinolates in Chinese cabbage plants expressing Arabidopsis MAM1, CYP79F1, and CYP83A1. Zang YX; Kim JH; Park YD; Kim DH; Hong SB BMB Rep; 2008 Jun; 41(6):472-8. PubMed ID: 18593532 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]