These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 30973308)
1. Analysis of Qi H; Yang J; Yin C; Zhao J; Ren X; Jia S; Zhang G Phytopathology; 2019 Aug; 109(8):1433-1440. PubMed ID: 30973308 [No Abstract] [Full Text] [Related]
2. Comparative analysis of pathogenicity and phylogenetic relationship in Magnaporthe grisea species complex. Choi J; Park SY; Kim BR; Roh JH; Oh IS; Han SS; Lee YH PLoS One; 2013; 8(2):e57196. PubMed ID: 23468934 [TBL] [Abstract][Full Text] [Related]
3. Origins of host-specific populations of the blast pathogen Magnaporthe oryzae in crop domestication with subsequent expansion of pandemic clones on rice and weeds of rice. Couch BC; Fudal I; Lebrun MH; Tharreau D; Valent B; van Kim P; Nottéghem JL; Kohn LM Genetics; 2005 Jun; 170(2):613-30. PubMed ID: 15802503 [TBL] [Abstract][Full Text] [Related]
4. Deciphering Genome Content and Evolutionary Relationships of Isolates from the Fungus Magnaporthe oryzae Attacking Different Host Plants. Chiapello H; Mallet L; Guérin C; Aguileta G; Amselem J; Kroj T; Ortega-Abboud E; Lebrun MH; Henrissat B; Gendrault A; Rodolphe F; Tharreau D; Fournier E Genome Biol Evol; 2015 Oct; 7(10):2896-912. PubMed ID: 26454013 [TBL] [Abstract][Full Text] [Related]
5. Novel insights into host specificity of Pyricularia oryzae and Pyricularia grisea in the infection of gramineous plant roots. Xiang Z; Okada D; Asuke S; Nakayashiki H; Ikeda K Mol Plant Pathol; 2022 Nov; 23(11):1658-1670. PubMed ID: 35957505 [TBL] [Abstract][Full Text] [Related]
7. Comparative genomic analysis revealed rapid differentiation in the pathogenicity-related gene repertoires between Pyricularia oryzae and Pyricularia penniseti isolated from a Pennisetum grass. Zheng H; Zhong Z; Shi M; Zhang L; Lin L; Hong Y; Fang T; Zhu Y; Guo J; Zhang L; Fang J; Lin H; Norvienyeku J; Chen X; Lu G; Hu H; Wang Z BMC Genomics; 2018 Dec; 19(1):927. PubMed ID: 30545292 [TBL] [Abstract][Full Text] [Related]
8. Host specialization of the blast fungus Magnaporthe oryzae is associated with dynamic gain and loss of genes linked to transposable elements. Yoshida K; Saunders DG; Mitsuoka C; Natsume S; Kosugi S; Saitoh H; Inoue Y; Chuma I; Tosa Y; Cano LM; Kamoun S; Terauchi R BMC Genomics; 2016 May; 17():370. PubMed ID: 27194050 [TBL] [Abstract][Full Text] [Related]
9. Comparative Pathogenicity and Host Ranges of Chung H; Goh J; Han SS; Roh JH; Kim Y; Heu S; Shim HK; Jeong DG; Kang IJ; Yang JW Plant Pathol J; 2020 Aug; 36(4):305-313. PubMed ID: 32788889 [TBL] [Abstract][Full Text] [Related]
10. First Report of Blast of Guinea Grass Caused by Pyricularia sp. LS-Group in Japan. Tsukiboshi T; Okabe I; Sugawara K Plant Dis; 2009 Dec; 93(12):1350. PubMed ID: 30759532 [TBL] [Abstract][Full Text] [Related]
11. Pyricularia grisea Isolates Causing Gray Leaf Spot on Perennial Ryegrass (Lolium perenne) in the United States: Relationship to P. grisea Isolates from Other Host Plants. Farman ML Phytopathology; 2002 Mar; 92(3):245-54. PubMed ID: 18943995 [TBL] [Abstract][Full Text] [Related]
12. A multilocus gene genealogy concordant with host preference indicates segregation of a new species, Magnaporthe oryzae, from M. grisea. Couch BC; Kohn LM Mycologia; 2002; 94(4):683-93. PubMed ID: 21156541 [TBL] [Abstract][Full Text] [Related]
13. Pyrichalasin H production and pathogenicity of Digitaria-specific isolates of Pyricularia grisea. Tsurushima T; Don LD; Kawashima K; Murakami J; Nakayashiki H; Tosa Y; Mayama S Mol Plant Pathol; 2005 Nov; 6(6):605-13. PubMed ID: 20565683 [TBL] [Abstract][Full Text] [Related]
14. Differentiation of Magnaporthe species complex by rep-PCR genomic fingerprinting. Motallebi P; Javan-Nikkhah M; Okhovvat M; Berdi Fotouhifar K; Hossien Mosahebi G Commun Agric Appl Biol Sci; 2009; 74(3):821-9. PubMed ID: 20222568 [TBL] [Abstract][Full Text] [Related]
15. Global genome and transcriptome analyses of Magnaporthe oryzae epidemic isolate 98-06 uncover novel effectors and pathogenicity-related genes, revealing gene gain and lose dynamics in genome evolution. Dong Y; Li Y; Zhao M; Jing M; Liu X; Liu M; Guo X; Zhang X; Chen Y; Liu Y; Liu Y; Ye W; Zhang H; Wang Y; Zheng X; Wang P; Zhang Z PLoS Pathog; 2015 Apr; 11(4):e1004801. PubMed ID: 25837042 [TBL] [Abstract][Full Text] [Related]
16. Carolina Foxtail (Alopecurus carolinianus): Susceptibility and Suitability as an Alternative Host to Rice Blast Disease (Magnaporthe oryzae [formerly M. grisea]). Jia Y; Gealy D; Lin MJ; Wu L; Black H Plant Dis; 2008 Apr; 92(4):504-507. PubMed ID: 30769644 [TBL] [Abstract][Full Text] [Related]
18. Nonhost resistance of barley is successfully manifested against Magnaporthe grisea and a closely related Pennisetum-infecting lineage but is overcome by Magnaporthe oryzae. Zellerhoff N; Jarosch B; Groenewald JZ; Crous PW; Schaffrath U Mol Plant Microbe Interact; 2006 Sep; 19(9):1014-22. PubMed ID: 16941905 [TBL] [Abstract][Full Text] [Related]
19. Is the fungus Magnaporthe losing DNA methylation? Ikeda K; Van Vu B; Kadotani N; Tanaka M; Murata T; Shiina K; Chuma I; Tosa Y; Nakayashiki H Genetics; 2013 Nov; 195(3):845-55. PubMed ID: 23979580 [TBL] [Abstract][Full Text] [Related]