BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 30973327)

  • 1. Gene activation by a CRISPR-assisted
    Xu X; Gao J; Dai W; Wang D; Wu J; Wang J
    Elife; 2019 Apr; 8():. PubMed ID: 30973327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intrinsic activation of cardiosphere-derived cells enhances myocardial repair.
    Sano T; Ito T; Ishigami S; Bandaru S; Sano S
    J Thorac Cardiovasc Surg; 2022 Apr; 163(4):1479-1490.e5. PubMed ID: 32682583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional Comparison between VP64-dCas9-VP64 and dCas9-VP192 CRISPR Activators in Human Embryonic Kidney Cells.
    Javaid N; Pham TLH; Choi S
    Int J Mol Sci; 2021 Jan; 22(1):. PubMed ID: 33401508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust Transcriptional Activation in Plants Using Multiplexed CRISPR-Act2.0 and mTALE-Act Systems.
    Lowder LG; Zhou J; Zhang Y; Malzahn A; Zhong Z; Hsieh TF; Voytas DF; Zhang Y; Qi Y
    Mol Plant; 2018 Feb; 11(2):245-256. PubMed ID: 29197638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implementation of a CRISPR-Based System for Gene Regulation in
    Román E; Coman I; Prieto D; Alonso-Monge R; Pla J
    mSphere; 2019 Feb; 4(1):. PubMed ID: 30760608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Programmable activation of Bombyx gene expression using CRISPR/dCas9 fusion systems.
    Wang XG; Ma SY; Chang JS; Shi R; Wang RL; Zhao P; Xia QY
    Insect Sci; 2019 Dec; 26(6):983-990. PubMed ID: 30088341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new method for the robust expression and single-step purification of dCas9 for CRISPR interference/activation (CRISPRi/a) applications.
    Pandey H; Yadav B; Shah K; Kaur R; Choudhary D; Sharma N; Rishi V
    Protein Expr Purif; 2024 Aug; 220():106500. PubMed ID: 38718989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly efficient activation of endogenous gene in grape using CRISPR/dCas9-based transcriptional activators.
    Ren C; Li H; Liu Y; Li S; Liang Z
    Hortic Res; 2022 Jan; 9():. PubMed ID: 35039855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inducible CRISPR-dCas9 Transcriptional Systems for Sensing and Genome Regulation.
    Wu H; Wang F; Jiang JH
    Chembiochem; 2021 Jun; 22(11):1894-1900. PubMed ID: 33433941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors.
    Piatek A; Ali Z; Baazim H; Li L; Abulfaraj A; Al-Shareef S; Aouida M; Mahfouz MM
    Plant Biotechnol J; 2015 May; 13(4):578-89. PubMed ID: 25400128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potent and Targeted Activation of Latent HIV-1 Using the CRISPR/dCas9 Activator Complex.
    Saayman SM; Lazar DC; Scott TA; Hart JR; Takahashi M; Burnett JC; Planelles V; Morris KV; Weinberg MS
    Mol Ther; 2016 Mar; 24(3):488-98. PubMed ID: 26581162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increasing the targeting scope and efficiency of base editing with Proxy-BE strategy.
    Liu Y; Li G; Yang G; Gu H; Huang S; Yu W; Qin G; Liu X; Zhou F; Huang X; Wei Y
    FEBS Lett; 2020 Apr; 594(8):1319-1328. PubMed ID: 31837228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR technologies for stem cell engineering and regenerative medicine.
    Hsu MN; Chang YH; Truong VA; Lai PL; Nguyen TKN; Hu YC
    Biotechnol Adv; 2019 Dec; 37(8):107447. PubMed ID: 31513841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR-based transcriptional activation tool for silent genes in filamentous fungi.
    Mózsik L; Hoekzema M; de Kok NAW; Bovenberg RAL; Nygård Y; Driessen AJM
    Sci Rep; 2021 Jan; 11(1):1118. PubMed ID: 33441979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced intrinsic CYP3A4 activity in human hepatic C3A cells with optically controlled CRISPR/dCas9 activator complex.
    Han S; Wei S; Wang X; Han X; Zhang M; Su M; Li Y; Guo J; Zeng W; Liu J; Gao Y; Shen L
    Integr Biol (Camb); 2018 Dec; 10(12):780-790. PubMed ID: 30520487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hepatic stellate cell reprogramming via exosome-mediated CRISPR/dCas9-VP64 delivery.
    Luo N; Li J; Chen Y; Xu Y; Wei Y; Lu J; Dong R
    Drug Deliv; 2021 Dec; 28(1):10-18. PubMed ID: 33336604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Repurposing CRISPR System for Transcriptional Activation.
    Chen M; Qi LS
    Adv Exp Med Biol; 2017; 983():147-157. PubMed ID: 28639197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Easy and Efficient Strategy for the Enhancement of Epothilone Production Mediated by TALE-TF and CRISPR/dcas9 Systems in
    Ye W; Liu T; Zhu M; Zhang W; Huang Z; Li S; Li H; Kong Y; Chen Y
    Front Bioeng Biotechnol; 2019; 7():334. PubMed ID: 32039165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR-Act2.0: An Improved Multiplexed System for Plant Transcriptional Activation.
    Malzahn A; Zhang Y; Qi Y
    Methods Mol Biol; 2019; 1917():83-93. PubMed ID: 30610630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Induced mutation and epigenetics modification in plants for crop improvement by targeting CRISPR/Cas9 technology.
    Khan MHU; Khan SU; Muhammad A; Hu L; Yang Y; Fan C
    J Cell Physiol; 2018 Jun; 233(6):4578-4594. PubMed ID: 29194606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.