These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 30973552)

  • 1. Nanoscale vesicles assembled from non-planar cyclic molecules for efficient cell penetration.
    Tang H; Gu Z; Li C; Li Z; Wu W; Jiang X
    Biomater Sci; 2019 May; 7(6):2552-2558. PubMed ID: 30973552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artificial enzymes based on supramolecular scaffolds.
    Dong Z; Luo Q; Liu J
    Chem Soc Rev; 2012 Dec; 41(23):7890-908. PubMed ID: 22972005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-tech applications of self-assembling supramolecular nanostructured gel-phase materials: from regenerative medicine to electronic devices.
    Hirst AR; Escuder B; Miravet JF; Smith DK
    Angew Chem Int Ed Engl; 2008; 47(42):8002-18. PubMed ID: 18825737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring macrocycles in functional supramolecular gels: from stimuli responsiveness to systems chemistry.
    Qi Z; Schalley CA
    Acc Chem Res; 2014 Jul; 47(7):2222-33. PubMed ID: 24937365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Supramolecular Vesicle Based on the Complexation of p-Sulfonatocalixarene with Protamine and its Trypsin-Triggered Controllable-Release Properties.
    Wang K; Guo DS; Zhao MY; Liu Y
    Chemistry; 2016 Jan; 22(4):1475-83. PubMed ID: 24595914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expanding the solvent chemical space for self-assembly of dipeptide nanostructures.
    Mason TO; Chirgadze DY; Levin A; Adler-Abramovich L; Gazit E; Knowles TP; Buell AK
    ACS Nano; 2014 Feb; 8(2):1243-53. PubMed ID: 24422499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supramolecular complexes for nanomedicine.
    Gangemi CMA; Puglisi R; Pappalardo A; Trusso Sfrazzetto G
    Bioorg Med Chem Lett; 2018 Nov; 28(20):3290-3301. PubMed ID: 30227945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Harnessing supramolecular peptide nanotechnology in biomedical applications.
    Chan KH; Lee WH; Zhuo S; Ni M
    Int J Nanomedicine; 2017; 12():1171-1182. PubMed ID: 28223805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembly of trigonal building blocks into nanostructures: molecular design and biomedical applications.
    Long K; Liu Y; Li Y; Wang W
    J Mater Chem B; 2020 Aug; 8(31):6739-6752. PubMed ID: 32686806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cholinesterase-responsive supramolecular vesicle.
    Guo DS; Wang K; Wang YX; Liu Y
    J Am Chem Soc; 2012 Jun; 134(24):10244-50. PubMed ID: 22686862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tuning Supramolecular Structure and Functions of Peptide bola-Amphiphile by Solvent Evaporation-Dissolution.
    Wang A; Cui L; Debnath S; Dong Q; Yan X; Zhang X; Ulijn RV; Bai S
    ACS Appl Mater Interfaces; 2017 Jun; 9(25):21390-21396. PubMed ID: 28590718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Remote Control of the Planar Chirality in Peptide-Bound Metallomacrocycles and Dynamic-to-Static Planar Chirality Control Triggered by Solvent-Induced 3(10)-to-α-Helix Transitions.
    Mamiya F; Ousaka N; Yashima E
    Angew Chem Int Ed Engl; 2015 Nov; 54(48):14442-6. PubMed ID: 26426427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supramolecular chemical biology; bioactive synthetic self-assemblies.
    Petkau-Milroy K; Brunsveld L
    Org Biomol Chem; 2013 Jan; 11(2):219-32. PubMed ID: 23160566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using Self-Assembling Peptides to Integrate Biomolecules into Functional Supramolecular Biomaterials.
    Liu R; Hudalla GA
    Molecules; 2019 Apr; 24(8):. PubMed ID: 31013712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cucurbit[n]uril-Based Microcapsules Self-Assembled within Microfluidic Droplets: A Versatile Approach for Supramolecular Architectures and Materials.
    Liu J; Lan Y; Yu Z; Tan CS; Parker RM; Abell C; Scherman OA
    Acc Chem Res; 2017 Feb; 50(2):208-217. PubMed ID: 28075551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acetylcholine-triggered cargo release from supramolecular nanovalves based on different macrocyclic receptors.
    Zhou Y; Tan LL; Li QL; Qiu XL; Qi AD; Tao Y; Yang YW
    Chemistry; 2014 Mar; 20(11):2998-3004. PubMed ID: 24585543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morphology transformation of pillararene-based supramolecular nanostructures.
    Ding JD; Jin WJ; Pei Z; Pei Y
    Chem Commun (Camb); 2020 Sep; 56(70):10113-10126. PubMed ID: 32666966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supramolecular polymers constructed from macrocycle-based host-guest molecular recognition motifs.
    Dong S; Zheng B; Wang F; Huang F
    Acc Chem Res; 2014 Jul; 47(7):1982-94. PubMed ID: 24684594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Responsive nanostructures from aqueous assembly of rigid-flexible block molecules.
    Kim HJ; Kim T; Lee M
    Acc Chem Res; 2011 Jan; 44(1):72-82. PubMed ID: 21128602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-dimensional assembly based on flow supramolecular chemistry: kinetic control of molecular interactions under solvent diffusion.
    Numata M; Kozawa T
    Chemistry; 2014 May; 20(21):6234-40. PubMed ID: 24737113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.