These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

363 related articles for article (PubMed ID: 30973666)

  • 21. Plant-Microbiota Interactions in Abiotic Stress Environments.
    Omae N; Tsuda K
    Mol Plant Microbe Interact; 2022 Jul; 35(7):511-526. PubMed ID: 35322689
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Systems Biology of Plant-Microbiome Interactions.
    Rodriguez PA; Rothballer M; Chowdhury SP; Nussbaumer T; Gutjahr C; Falter-Braun P
    Mol Plant; 2019 Jun; 12(6):804-821. PubMed ID: 31128275
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Insight into farming native microbiome by bioinoculant in soil-plant system.
    Wang Z; Fu X; Kuramae EE
    Microbiol Res; 2024 Aug; 285():127776. PubMed ID: 38820701
    [TBL] [Abstract][Full Text] [Related]  

  • 24. From Elemental Sulfur to Hydrogen Sulfide in Agricultural Soils and Plants.
    Fuentes-Lara LO; Medrano-Macías J; Pérez-Labrada F; Rivas-Martínez EN; García-Enciso EL; González-Morales S; Juárez-Maldonado A; Rincón-Sánchez F; Benavides-Mendoza A
    Molecules; 2019 Jun; 24(12):. PubMed ID: 31248198
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hiseq Base Molecular Characterization of Soil Microbial Community, Diversity Structure, and Predictive Functional Profiling in Continuous Cucumber Planted Soil Affected by Diverse Cropping Systems in an Intensive Greenhouse Region of Northern China.
    Ali A; Imran Ghani M; Li Y; Ding H; Meng H; Cheng Z
    Int J Mol Sci; 2019 May; 20(11):. PubMed ID: 31141960
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Polymicrobial Multi-functional Approach for Enhancement of Crop Productivity.
    Reddy CA; Saravanan RS
    Adv Appl Microbiol; 2013; 82():53-113. PubMed ID: 23415153
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Soil-Borne Legacy.
    Bakker PAHM; Pieterse CMJ; de Jonge R; Berendsen RL
    Cell; 2018 Mar; 172(6):1178-1180. PubMed ID: 29522740
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biotechnological perspectives of microbes in agro-ecosystems.
    Choudhary DK; Sharma KP; Gaur RK
    Biotechnol Lett; 2011 Oct; 33(10):1905-10. PubMed ID: 21660571
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biotic interactions in the rhizosphere: a diverse cooperative enterprise for plant productivity.
    De-la-Peña C; Loyola-Vargas VM
    Plant Physiol; 2014 Oct; 166(2):701-19. PubMed ID: 25118253
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Climate change driven plant-metal-microbe interactions.
    Rajkumar M; Prasad MN; Swaminathan S; Freitas H
    Environ Int; 2013 Mar; 53():74-86. PubMed ID: 23347948
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Field study reveals core plant microbiota and relative importance of their drivers.
    Hamonts K; Trivedi P; Garg A; Janitz C; Grinyer J; Holford P; Botha FC; Anderson IC; Singh BK
    Environ Microbiol; 2018 Jan; 20(1):124-140. PubMed ID: 29266641
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microbial Hub Taxa Link Host and Abiotic Factors to Plant Microbiome Variation.
    Agler MT; Ruhe J; Kroll S; Morhenn C; Kim ST; Weigel D; Kemen EM
    PLoS Biol; 2016 Jan; 14(1):e1002352. PubMed ID: 26788878
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Harnessing rhizosphere microbiomes for drought-resilient crop production.
    de Vries FT; Griffiths RI; Knight CG; Nicolitch O; Williams A
    Science; 2020 Apr; 368(6488):270-274. PubMed ID: 32299947
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comprehensive insight into arbuscular mycorrhizal fungi, Trichoderma spp. and plant multilevel interactions with emphasis on biostimulation of horticultural crops.
    Szczałba M; Kopta T; Gąstoł M; Sękara A
    J Appl Microbiol; 2019 Sep; 127(3):630-647. PubMed ID: 30844108
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms.
    Mendes R; Garbeva P; Raaijmakers JM
    FEMS Microbiol Rev; 2013 Sep; 37(5):634-63. PubMed ID: 23790204
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microbially Mediated Plant Salt Tolerance and Microbiome-based Solutions for Saline Agriculture.
    Qin Y; Druzhinina IS; Pan X; Yuan Z
    Biotechnol Adv; 2016 Nov; 34(7):1245-1259. PubMed ID: 27587331
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Exploring the roles of microbes in facilitating plant adaptation to climate change.
    Barnes EM; Tringe SG
    Biochem J; 2022 Feb; 479(3):327-335. PubMed ID: 35119455
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metabolic interactions in beneficial microbe recruitment by plants.
    Abedini D; Jaupitre S; Bouwmeester H; Dong L
    Curr Opin Biotechnol; 2021 Aug; 70():241-247. PubMed ID: 34237663
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cell-free microbial culture filtrates as candidate biostimulants to enhance plant growth and yield and activate soil- and plant-associated beneficial microbiota.
    Morcillo RJL; Baroja-Fernández E; López-Serrano L; Leal-López J; Muñoz FJ; Bahaji A; Férez-Gómez A; Pozueta-Romero J
    Front Plant Sci; 2022; 13():1040515. PubMed ID: 36618653
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Integrating nanotechnology with plant microbiome for next-generation crop health.
    Hussain M; Zahra N; Lang T; Zain M; Raza M; Shakoor N; Adeel M; Zhou H
    Plant Physiol Biochem; 2023 Mar; 196():703-711. PubMed ID: 36809731
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.