These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 30974254)

  • 1. The contact angle of nanofluids as thermophysical property.
    Hernaiz M; Alonso V; Estellé P; Wu Z; Sundén B; Doretti L; Mancin S; Çobanoğlu N; Karadeniz ZH; Garmendia N; Lasheras-Zubiate M; Hernández López L; Mondragón R; Martínez-Cuenca R; Barison S; Kujawska A; Turgut A; Amigo A; Huminic G; Huminic A; Kalus MR; Schroth KG; Buschmann MH
    J Colloid Interface Sci; 2019 Jul; 547():393-406. PubMed ID: 30974254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanofluids droplets evaporation kinetics and wetting dynamics on rough heated substrates.
    Sefiane K; Bennacer R
    Adv Colloid Interface Sci; 2009; 147-148():263-71. PubMed ID: 19019321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The wettability of PTFE and glass surfaces by nanofluids.
    Chaudhuri RG; Paria S
    J Colloid Interface Sci; 2014 Nov; 434():141-51. PubMed ID: 25181329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous spreading and evaporation: recent developments.
    Semenov S; Trybala A; Rubio RG; Kovalchuk N; Starov V; Velarde MG
    Adv Colloid Interface Sci; 2014 Apr; 206():382-98. PubMed ID: 24075076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic spreading of nanofluids on solids. Part I: experimental.
    Kondiparty K; Nikolov AD; Wasan D; Liu KL
    Langmuir; 2012 Oct; 28(41):14618-23. PubMed ID: 22966990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermophysical properties of nanofluids.
    Rudyak VY; Minakov AV
    Eur Phys J E Soft Matter; 2018 Jan; 41(1):15. PubMed ID: 29380078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wetting and spreading of nanofluids on solid surfaces driven by the structural disjoining pressure: statics analysis and experiments.
    Kondiparty K; Nikolov A; Wu S; Wasan D
    Langmuir; 2011 Apr; 27(7):3324-35. PubMed ID: 21395240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of Nanoparticles on Thermophysical Properties of Hybrid Nanofluids of Different Volume Fractions.
    Abdullah MZ; Yu KH; Loh HY; Kamarudin R; Gunnasegaran P; Alkhwaji A
    Nanomaterials (Basel); 2022 Jul; 12(15):. PubMed ID: 35957001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The dynamic spreading of nanofluids on solid surfaces - Role of the nanofilm structural disjoining pressure.
    Lim S; Zhang H; Wu P; Nikolov A; Wasan D
    J Colloid Interface Sci; 2016 May; 470():22-30. PubMed ID: 26928061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heat Transfer Performance of Functionalized Graphene Nanoplatelet Aqueous Nanofluids.
    Agromayor R; Cabaleiro D; Pardinas AA; Vallejo JP; Fernandez-Seara J; Lugo L
    Materials (Basel); 2016 Jun; 9(6):. PubMed ID: 28773578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Boiling heat transfer and droplet spreading of nanofluids.
    Murshed SM; de Castro CA
    Recent Pat Nanotechnol; 2013 Nov; 7(3):216-23. PubMed ID: 24330044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A New Phase Change Material Based on Potassium Nitrate with Silica and Alumina Nanoparticles for Thermal Energy Storage.
    Chieruzzi M; Miliozzi A; Crescenzi T; Torre L; Kenny JM
    Nanoscale Res Lett; 2015 Dec; 10(1):984. PubMed ID: 26123273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene-Based Nanofluids: Production Parameter Effects on Thermophysical Properties and Dispersion Stability.
    Ali N
    Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanofluid surface wettability through asymptotic contact angle.
    Vafaei S; Wen D; Borca-Tasciuc T
    Langmuir; 2011 Mar; 27(6):2211-8. PubMed ID: 21338112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristic analysis of three-ecofriendly reduced graphene oxides (rGOs) and their application in water-ethanol-based fluids with different volume ratios.
    Xu J; Lu L; Duan G; Zhao W
    RSC Adv; 2022 Feb; 12(9):5522-5533. PubMed ID: 35425572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental Research and Development on the Natural Convection of Suspensions of Nanoparticles-A Comprehensive Review.
    Murshed SMS; Sharifpur M; Giwa S; Meyer JP
    Nanomaterials (Basel); 2020 Sep; 10(9):. PubMed ID: 32948081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanofluids alter the surface wettability of solids.
    Lim S; Horiuchi H; Nikolov AD; Wasan D
    Langmuir; 2015 Jun; 31(21):5827-35. PubMed ID: 25919686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Is metal nanofluid reliable as heat carrier?
    Nine MJ; Chung H; Tanshen MR; Osman NA; Jeong H
    J Hazard Mater; 2014 May; 273():183-91. PubMed ID: 24735805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heat Transfer Capability of (Ethylene Glycol + Water)-Based Nanofluids Containing Graphene Nanoplatelets: Design and Thermophysical Profile.
    Cabaleiro D; Colla L; Barison S; Lugo L; Fedele L; Bobbo S
    Nanoscale Res Lett; 2017 Dec; 12(1):53. PubMed ID: 28102524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.